하네스 설계를 사용하여 와이어 하네스 만들기
하네스 설계를 사용하여 와이어 하네스 만들기
소유권 및 재한적 권리 고지 사항

이 소프트웨어와 관련 문서는 Siemens Product Lifecycle Management Software Inc.의 소유입니다.

© 2011 Siemens Product Lifecycle Management Software Inc. All Rights Reserved.

Siemens 및 Siemens 로고는 Siemens AG의 등록상표입니다. Solid Edge는 미국 및 기타 국가에서 Siemens Product Lifecycle Management Software Inc. 또는 그 자회사의 상표 또는 등록상표입니다. 다른 모든 상표, 등록상표 또는 서비스 표시는 해당 소유자에게 속해 있습니다.

SOLID EDGE
VELOCITY SERIES

...with Synchronous Technology
목차

소개 ... 1-1
소개 ... 0-1
와이어 하네스 설계 위크플로 ... 2-1
BlueDot를 이용한 도션과 컨포넌트의 재배치(정렬식 환경) 2-3
하네스 미법사를 사용하여 자동으로 하네스 설계 생성 2-4
PathFinder의 하네스 설계 ... 2-12
도선 재기 .. 2-15
와이어 하네스 솔리드 바디 생성 ... 2-16
다른 형식으로 와이어 하네스 출력 ... 2-17

작업: 새 하네스 생성 ... 3-1
작업: 하네스 설계를 사용하여 와이어 하네스 생성 A-1

하네스 설계 환경 열기 .. A-2
어셈블리 파트 활성화 ... A-3
콘솔 파트 활성화 ... A-4
하네스 미법사 시작 .. A-5
하네스 미법사 정보 입력 - 3단계 중 1단계 ... A-6
하네스 미법사 정보 입력 - 3단계 중 2단계 ... A-7
하네스 미법사 정보 입력 - 3단계 중 3단계 ... A-9
터미널 A 할당 ... A-10
터미널 B 할당 ... A-11
터미널 C 할당 ... A-12
뷰 맞춤 .. A-13
PathFinder 보기 .. A-14
뷰 만들기 .. A-15
하네스 미법사 명령 다시 선택 .. A-17
어셈블리 화면표시 변경 .. A-18
어셈블리에서 확대 .. A-19
와이어 만들기 ... A-20
와이어의 첫 번째 점 선택 .. A-21
뷰 맞춤 .. A-22
위쪽 게이지 확대 .. A-23
와이어의 끝 점 선택 .. A-24
와이어 마치기 ... A-25
뷰 맞춤 .. A-26
어셈블리에서 확대 .. A-27
다른 와이어 만들기 ... A-28
와이어 마치기 ... A-30
뷰 맞춤 .. A-31
케이블 만들기 ... A-32
뷰 체이팅 ... A-34
목차

와이어 하네스의 솔리드 바디 만들기 A-35
뷰 방향 변경 ... A-36
어셈블리에서 확대 ... A-37
와이어 이동 ... A-38
와이어 두 개 더 이동 ... A-40
뷰 맞춤 .. A-42
뷰 방향 변경 ... A-43
숨겨진 파트 표시 ... A-44
하네스의 와이어 숨기기 ... A-45
와이어 하네스 보고서 만들기 .. A-46
어셈블리 환경으로 돌아가기 ... A-48
파일 저장 .. A-49

과정 복습 .. B-1

답변 .. C-1

과정 요약 .. D-1
제 1 장 소개

Solid Edge에 대한 자습 교육을 시작합니다. 이 과정은 Solid Edge의 사용에 대해 교육하기 위해 고안되었습니다. 이 과정은 자습 형식으로 진행되며 설명과 작업 순서로 이루어져 있습니다.

Solid Edge 자습 과정

- spse01510—스케치
- spse01515—베이스 형상 생성
- spse01520—면 이동 및 회전
- spse01525—면 관계 작업
- spse01530—처리 형상 생성
- spse01535—절차 형상 생성
- spse01536—동기식 및 정렬식 형상 모델링
- spse01540—어셈블리 모델링
- spse01545—세부 도면 생성
- spse01546—관금 설계
- spse01550—프로젝트로 실습
- spse01560—곡면을 사용하여 파트 모델링
- spse01610—Solid Edge 프레임 설계
- spse01640—어셈블리 패턴 생성
- spse01645—어셈블리 시스템 라이브러리
- spse01650—대규모 어셈블리 작업
- spse01655—어셈블리 개정
- spse01660—어셈블리 보고서
- spse01665—어셈블리에서 파트 교체
- spse01670—어셈블리 컨텍스트에서 설계
- spse01675—어셈블리 형상
제 1 장

소개

- spse01680—어셈블리 검사
- spse01685—대체 어셈블리
- spse01686—가변 파트 및 어셈블리
- spse01690—어셈블리의 가상 컴포넌트
- spse01691—어셈블리 분해
- spse01692—어셈블리 렌더링
- spse01693—어셈블리 에니메이트
- spse01695—XpresRoute(튜브)
- spse01696—하네스 설계를 사용하여 와이어 하네스 만들기
- spse01424—Solid Edge Embedded Client 작업

Solid Edge 자습 모듈

- spse01510—스케치
- spse01515—베이스 형상 생성
- spse01520—면 이동 및 회전
- spse01525—지오메트리 관계 작업
- spse01530—처리 형상 생성
- spse01535—절차 형상 생성
- spse01536—동기식 및 정렬식 형상 모델링
- spse01540—어셈블리 모델링
- spse01545—세부 도면 생성
- spse01546—판금 설계
- spse01550—프로젝트로 실습

자습서(Tutorials) 시작

자습서가 끝나면 자습 과정이 시작됩니다. 자습서(Tutorials)는 Solid Edge의 기본적인 사용 방법을 익히기 위한 가장 빠른 방법입니다. 따라서 Solid Edge를 처음 사용하는 경우에는 이 자습 과정을 시작하기 전에 먼저 자습서를 학습하여 기본적인 파트 모델링과 관련 방법을 익히십시오.
제 장 소개

이 과정에서는 하네스 설계 환경에서 여러 와이어, 케이블 및 번들을 포함하는 하네스 설계를 만드는 명령 사용에 대해 단계적으로 설명합니다.

하네스 설계를 사용하면 어셈블리 한 지점에서 다른 지점까지 간편하게 와이어, 케이블, 번들을 구성할 수 있습니다. 하네스 설계 모듈은 가져온 net list에 포함된 정보를 기반으로 하네스 설계를 자동으로 생성하는 하네스 마법사를 제공합니다. 이 모듈에서는 파트 간 3D 경로를 빠르게 정의하고 와이어, 케이블, 번들 등록 정보를 정의하는 구조적인 워크플로를 제공합니다. 등록 정보를 정의하고 나면 소프트웨어가 와이어, 케이블, 번들을 구성합니다.

이 지시서는 하네스 설계에서 수행할 수 있는 모든 작업을 보여 주는 데 목적이 있지 않습니다. 이 지시서의 목적인 강력하고 적관적인 하네스 설계를 보여 주고 사용자가 실습을 통해 스스로 더 많은 기능을 익힐 수 있도록 돕는 데 있습니다.
제2 장 와이어 하네스 설계 워크플로

와이어 하네스 설계 개요
와이어 하네스 응용프로그램을 사용하면 전기 도선이 포함된 어셈블리에서 작업할 수 있습니다.

와이어 하네스 응용프로그램을 활용하려면 도구 탭→환경 그룹→하네스를 선택합니다. Solid Edge 와이어 하네스 설계는 등급 도선만 사용하여 작업하도록 만들어졌으며, 리본 케이블은 지원하지 않습니다.

메모(Note)
어셈블리에서 사용할 수 있는 도선의 수에는 제한이 없습니다.

일반적으로 하네스 설계에서 사용되는 설계 프로세스는 두 가지입니다. 첫 번째 설계 프로세스에서는 2D 전기 회로도가 먼저 개발되고 3D 모델이 회로도에서 파생됩니다. 두 번째 설계 프로세스에서는 2D 회로도가 없거나, 3D 모델과 함께 사용되지 않습니다.

하네스 설계 워크플로
사용되는 설계 프로세스에 따라 하네스 설계를 만들기 위해 두 가지 워크플로를 사용할 수 있습니다.
• 자동
• 수동
자동으로 하네스 설계 생성 워크플로
1. ECAD 시스템을 사용하거나 수동으로 새 목록을 만듭니다.
2. 하네스 설계를 위해 컴퓨터, 연결 및 터미널 정보를 할당하려면 하네스 마법사 명령을 사용하여 목록 파일을 Solid Edge에 가져옵니다.
3. 어셈블리가 아직 만들어지지 않은 경우 이동 및 어셈블 명령을 사용하여 자동으로 배치된 컴퓨터의 위치를 지정합니다.
4. 필요에 따라 와이어와 케이블을 묶고 경로를 지정합니다.
5. net list에 포함되지 않은 와이어나 케이블을 추가합니다.
6. 모든 도선이 최소 급행반경을 초과하는지, 올바른 여분 길이인지 확인합니다.
7. 제조 보고서를 만들고 하네스의 3D 표현을 생성합니다.

수동으로 하네스 설계 생성 워크플로
1. 필요한 모든 컴퓨터를 포함하여 어셈블리를 만듭니다. 하네스 설계 환경에서 컴퓨터를 배치할 수 있습니다.
2. 설계에 필요한 와이어 및 케이블을 만듭니다.
3. 필요에 따라 와이어와 케이블을 묶고 경로를 지정합니다.
4. 모든 도선이 최소 급행반경을 초과하는지, 올바른 여분 길이인지 확인합니다.
5. 제조 보고서를 만들고 하네스의 3D 표현을 생성합니다.
BlueDot를 이용한 도선과 컴포넌트의 재배치(정렬식 환경)

메모(Note)

BlueDot는 정렬식 환경에서만 사용 가능합니다.

정렬식 환경에서 와이어 하네스를 만든 다음 설계를 깔끔하게 정리하기 위해 도선과 컴포넌트의 위치를 변경해야 할 수도 있습니다. 케이블 또는 변들을 만드는 경우 와이어, 케이블 및 변들이 만나는 지점에 bluedot이 만들어집니다.

bluedot을 끌어 변들과 케이블이 따르는 경로를 변경할 수 있습니다.
제 2 장
와이어 하네스 설계 워크플로

하네스 마법사를 사용하여 자동으로 하네스 설계 생성

하네스 마법사 명령은 토큰 탭에서 하네스 그룹에 있으며, 와이어 하네스를 자동으로 생성합니다. 마법사에서는 가져온 net list 파일에 저장된 정보를 사용하여 어셈블리에 포함된와 도선을 채웁니다.

메모(Note)
마법사를 실행하기 전에 파트 환경에서 터미널 할당 명령을 사용하여 하네스 설계에 사용될 컴퓨터에 대한 컴퓨터 이름과 터미널 이름을 할당합니다.

이 명령을 선택하면 일련의 다이얼로그가 와이어 하네스에 대한 정보를 정의하는 과정을 안내합니다.

이 다이얼로그에 대한 자세한 내용은 하네스 마법사의 1단계 사용을 참조하십시오.

이 다이얼로그에 대한 자세한 내용은 하네스 마법사의 2단계 사용을 참조하십시오.

이 다이얼로그에 대한 자세한 내용은 하네스 마법사의 3단계 사용을 참조하십시오.
하네스 마법사의 1단계 사용

하네스 마법사 - 3단계 중 1단계 다이얼로그를 사용하여 다음을 지정합니다.

• ECAD net list 파일의 형식
• 하네스를 만드는 데 사용되는 컴포넌트 문서
• 하네스를 만드는 데 사용되는 도선 문서

ECAD net list 파일의 형식 지정

문서 형식 옵션을 사용하면 외어 하네스를 만드는 데 사용되는 net list 파일의 형식을 지정할 수 있습니다. 메뉴를 사용하여 SEHarness.txt 파일에 있는 문서 형식의 목록을 표시합니다.

Solid Edge Program 폴더에 있는 SEHarness.txt 파일은 외어 하네스를 만드는 데 사용되는 ECAD net list 파일의 데이터 형식을 정의합니다.

SEHarness.txt 파일은 세 부분으로 구성됩니다.

• 메뉴 목록에 표시되는 형식을 나타내기도 하는 회사 이름
• 컴포넌트 파일의 각 열을 정의하는 데 사용되는 컴포넌트 정의
• 연결 파일의 각 열을 정의하는 데 사용되는 연결 정의

하네스를 생성하는 데 사용되는 컴포넌트 문서 지정

컴포넌트 문서 옵션을 사용하면 외어 하네스를 만드는 데 사용되는 컴포넌트 문서를 지정할 수 있습니다. 문서는 .CMP 또는 .CMP.XML 형식일 수 있습니다.

컴포넌트 문서에는 컴포넌트 ID, 컴포넌트 이름 및 컴포넌트 설명 같은 정보가 포함됩니다.

하네스를 생성하는 데 사용되는 도선 문서 지정

연결 문서 옵션을 사용하면 외어 하네스를 만드는 데 사용되는 연결 문서를 지정할 수 있습니다. 문서는 .CON 또는 .CON/XML 형식일 수 있습니다.

연결 문서에는 컴포넌트 ID, 색상 및 재료와 컴포넌트 시작 ID 및 컴포넌트 끝 ID 같은 외어 하네스의 연결을 설명하는 정보가 포함되어 있습니다.
제 2 장 와이어 하네스 설계 워크플로

하네스 마법사의 2단계 사용

하네스 마법사 - 3단계 중 2단계 다이얼로그를 사용하여 다음을 지정합니다.

- 컴퓨터 ID에 컴퓨터 할당
- 어셈블리에 이미 있는 컴퓨터 파일의 어커런스 할당
- 어셈블리에 컴퓨터 재우기

컴퓨터 할당

마법사를 실행하기 전에 터미널 할당 명령을 사용하여 컴퓨터 및 터미널을 할당하지 못한 경우 컴퓨터 파일에는 정의되지 않은 컴퓨터가 포함됩니다. 할당되지 않은 컴퓨터가 파일에 포함되며 컴퓨터는 테이블에서 주황색으로 표시됩니다. 컴퓨터를 할당하기 위해 마법사를 종료하지 않아도 됩니다.

컴퓨터를 할당하려면

1. 컴퓨터 테이블에서 컴퓨터를 클릭합니다.
2. 컴퓨터 할당 명령을 클릭합니다.
3. 컴퓨터를 할당할 파트를 클릭합니다. 테이블에 컴퓨터가 제외지고 상태 및 어커런스를 열의 강조 표시가 지워집니다.

컴퓨터에 대한 어커런스 이동 열을 마우스 오른쪽 버튼으로 클릭한 다음 바로 가기 메뉴에서 찾아보기를 클릭하여 파트를 검색할 수 있습니다.

메모 (Note)

파트에는 컴퓨터가 하나만 포함될 수 있습니다.

어커런스 할당

마법사를 실행하기 전에 컴퓨터를 가져오는 경우 Solid Edge에서는 파트가 나타나는 순서에 따라 어셈블리에서 복제된 모든 파트에 인스턴스를 자동으로 할당합니다. 어커런스의 순서가 없는 경우 어커런스 할당 명령을 사용하여 컴퓨터에 대한 어커런스를 변경할 수 있습니다.

 컴퓨터가 이미 할당된 경우 어커런스를 할당하려 면

1. 변경할 어커런스를 포함하는 컴퓨터가 있는 강조 표시된 행을 클릭합니다.
2. 어커런스 할당 버튼을 클릭합니다.
3. 어커런스를 할당할 컴퓨터를 클릭합니다.

동일한 파트 파일이 선택된 경우 두 개의 파트 파일이 인스턴스를 교체합니다. 선택한 파트가 컴퓨터와 연결되지 않은 경우 파트는 강조 표시된 컴퓨터에 할당됩니다.

 컴퓨터가 할당되지 않은 경우 어커런스를 할당하려 면

1. 어커런스 할당 버튼을 클릭합니다.
2. 어커런스를 할당할 컴퓨터를 클릭합니다.

선택한 파트가 컴퓨터와 연결되지 않은 경우 파트는 강조 표시된 컴퓨터에 할당됩니다. 파트가 컴퓨터와 연결된 경우 오류 메시지가 표시됩니다.
컴포넌트 채우기

컴포넌트 파일에 나열된 파트가 어셈블리에 없는 경우 하네스 마법사에서 컴포넌트를 채울 수 있습니다. 마법사의 다음 단계를 진행하려면 모든 파트를 채워야 합니다. 마법사를 사용하여 파트를 추가하거나 직접 추가할 수 있습니다.

컴포넌트를 채우려면
1. 강조 표시된 컴포넌트에 대해 어커런스 열에서 마우스 오른쪽 버튼을 클릭합니다.
2. 바로 가기 메뉴에서 찾아보기를 클릭하여 열기 다이얼로그를 표시합니다.
3. 적절한 파트를 선택하고 열기 버튼을 클릭합니다.
4. 채우기 버튼을 클릭합니다.

메모(Note)
 찾아보면 매번 채우기 버튼을 클릭하지 않아도 됩니다. 모든 파트를 찾아본 다음 채우기 버튼을 클릭해도 됩니다.

어셈블리에 컴포넌트를 채울 때는 채우기 옵션 버튼을 클릭하여 하네스 채우기 옵션 다이얼로그를 표시합니다. 이 다이얼로그에서는 어셈블리에 가져올 컴포넌트의 배열에 대한 정보를 볼 수 있습니다.

배열에는 컴포넌트에 대한 정보가 포함되지만 어셈블리에서 이러한 컴포넌트와 관련된 파트가 어느 위치에 배치되어야 하는지에 대한 정보는 없습니다. 파트 위치를 알 수 없으므로 파트는 왼쪽(XY) 참조 평면에 배치됩니다. 마법사가 완료된 후 어셈블리 명령을 사용하여 파트를 적절한 위치에 배치합니다.
제 2 장

와이어 하네스 설계 워크플로

와이어 하네스 마법사의 3단계 사용

이 다이얼로그에는 와이어 하네스를 만드는 데 사용되는 연결에 대한 정보가 표시됩니다. 이 다이얼로그의 옵션을 사용하여 다음 작업을 수행할 수 있습니다.

- 콤포넌트 파트에 터미널 할당
- 하네스에서 와이어 삭제
- 와이어 또는 케이블에 속성 할당
- 하네스 미리보기

- 터미널 할당

파일에 정의되지 않은 터미널이 있으면 주황색으로 강조 표시됩니다. 콤포넌트와 마찬가지로 터미널을 할당하기 위해 마법사를 종료하지 않아도 됩니다.

터미널을 할당하려면

1. 연결 테이블에서 터미널을 클릭합니다.
2. 터미널 할당 버튼을 클릭합니다.
3. 그래픽 창에 강조 표시된 파트에서 터미널을 할당할 원형 모서리를 클릭합니다. 터미널이 할당되고 셀의 강조 표시가 지워집니다.

- 하네스에서 와이어 삭제

 연결 문서에 나열된 와이어가 와이어 하네스에서 필요하지 않은 경우 삭제할 수 있습니다.

하네스에서 와이어를 삭제하려면

1. 삭제할 와이어를 마우스 오른쪽 버튼으로 클릭합니다.
2. 바로 가기 메뉴에서 하네스에서 와이어 삭제를 클릭합니다.

- 와이어 또는 케이블에 속성 할당

마법사에서 작업하는 동안 와이어 또는 케이블에 속성을 할당할 수 있습니다.

와이어에 속성을 할당하려면

1. 와이어에 대한 Solid Edge 속성 열을 클릭합니다.
2. 메뉴 화살표를 클릭합니다.

목록에는 선택한 와이어 유형에 대한 속성이 포함되어 있습니다. 예를 들어, 와이어의 케이지가 16이면 목록에는 16 케이지의 와이어에 대한 속성만 표시합니다. 또한 목록에는 필터 제거 항목이 있어 필터를 제거하고 다른 와이어 유형에 대한 속성을 표시할 수 있습니다.

3. 목록에서 속성을 선택합니다.
케이블에 속성을 할당하려면

1. 케이블에 대한 케이블 속성 열을 클릭합니다.

2. 메뉴 화살표를 클릭합니다.
 목록에는 선택한 케이블 유형에 대한 속성이 포함되어 있습니다. 또한 목록에는 필터 제거 항목이 있어 필터를 제거하고 다른 케이블 유형에 대한 속성을 표시할 수 있습니다.

3. 목록에서 속성을 선택합니다.

• 하네스 미리보기

미리보기 버튼을 사용하여 하네스를 미리 볼 수 있습니다. 하나의 연결을 미리 보거나 Shift와 Ctrl 키를 사용하여 여러 연결을 미리 볼 수 있습니다.

하네스 미리 보려면
1. 미리 볼 연결을 선택합니다.

2. 미리보기 버튼을 클릭합니다.

연결의 직선 미리보기가 어셈블리에 표시됩니다.

마법사의 정보가 모두 올바른지 확인한 다음 마침을 클릭하여 하네스를 생성합니다.
제 2 장 와이어 하네스 설계 워크플로

하네스가 만들어지면 케이블 또는 변들 명령을 사용하여 설계의 와이어 또는 케이블을 묶을 수 있습니다.

와이어 하네스를 만든 다음 설계를 갈끔하게 정리하기 위해 도선과 컴포넌트의 위치를 변경해야 할 수도 있습니다. 케이블 또는 변들을 만드는 경우 와이어, 케이블 및 변들이 만나는 지점에 bluedot이 만들어집니다.

bluedot을 끌어 변들과 케이블이 따르는 경로를 변경할 수 있습니다.

이동 명령으로 컴포넌트를 다른 위치로 끌어 하네스 설계를 갈끔하게 정리할 수도 있습니다.
다른 위치로 컴포넌트를 옮기면 도선의 연결이 자동으로 업데이트됩니다.
제 2 장 왜이어 하네스 설계 위크플로

PathFinder의 하네스 설계

경로와 도선을 만들면 PathFinder에 추가됩니다.
PathFinder에서 도선에 커서를 놓으면 도선의 모든 어커런스가 빨간색 상자로 표시됩니다.

또한 그래픽 창에서 강조 표시됩니다.
제 2 장 와이어 하네스 설계 워크플로

강조 표시된 와이어는 케이블의 일부가 되기 전까지 단색으로 표시됩니다. 케이블의 일부가 되면 파선으로 표시됩니다. 또한 케이블과 와이어가 반들의 일부가 되면 파선의 색이 변경됨을 알 수 있습니다.

PathFinder에서 케이블에 커서를 갖다 대면 케이블의 모든 어커린스에 윈곽이 표시되고 케이블이 단색으로 강조 표시되며 케이블을 포함하는 반들의 파선으로 강조 표시됩니다. 케이블에 포함된 와이어는 강조 표시되지 않을 수 있습니다.

PathFinder에서 번들에 커서를 갖다 대면 번들의 모든 어커린스에 윈곽이 표시되고 번들이 단색으로 강조 표시됩니다. 번들에 포함된 와이어와 케이블은 강조 표시되지 않을 수 있습니다.

PathFinder에서 도선을 마우스 오른쪽 버튼으로 클릭하고 바로 가지 명령 목록을 표시하여 도선을 조작할 수 있습니다.
도선 제거

제거 명령을 사용하여 부모에서 도선을 제거할 수 있습니다. 명령을 사용하려면 도선에서 마우스 오른쪽 버튼을 클릭하고 바로 가기 메뉴에서 제거를 클릭합니다.

하나의 상위 오브젝트에서 도선을 제거하는 경우 모든 상위 오브젝트의 정의에서 제거됩니다. 도선의 기존 끝점과 출발점은 유지됩니다. 선택한 도선과 상위 오브젝트에서 공유하는 경로 세그먼트는 도선 정의에서 제거됩니다. 제거된 세그먼트를 대체하기 위해 새로운 세그먼트가 생성됩니다.
제 2 장 와이어 하네스 설계 워크플로

와이어 하네스 솔리드 바디 생성

물리적 도선 생성 명령을 사용하여 하네스 설계를 구성하는 와이어, 케이블 및 번들의 솔리드 바디를 생성할 수 있습니다. 이 명령은 하네스 설계에 대한 랜더링 또는 상세 도면이 필요할 때 유용합니다.

![Diagram of a wire harness](image)

명령을 사용하려면 PathFinder에서 도선을 마우스 오른쪽 버튼으로 클릭합니다. 솔리드 바디는 선택한 도선에 대해서만 만들어집니다. 즉, 케이블을 선택한 경우 케이블에 포함된 와이어에 대한 솔리드 바디는 만들어지지 않습니다. 어셈블리 PathFinder의 하네스 노드를 마우스 오른쪽 버튼으로 클릭하면 한 번에 모든 솔리드를 생성할 수 있습니다. 솔리드 바디는 어셈블리에 포함되며 어셈블리에는 세 문서가 추가되지 않습니다.

메모(Note)

속성을 포함하지 않는 하네스 설계의 경로는 솔리드 바디를 만들 때 포함되지 않습니다.

도선에 대한 솔리드 바디를 만드는 경우 PathFinder에서 도선에 인접한 심볼이 업데이트되어 도선에 대해 솔리드 바디가 만들어졌음을 나타냅니다.

메모(Note)

여러 개의 도선을 선택하려면 Ctrl 키를 누른 채 원하는 도선을 클릭합니다. 도선 목록을 선택하려면 목록에 있는 첫번째 도선을 클릭한 다음 Shift 키를 누른 채 목록의 마지막 도선을 클릭합니다.

도선에 대한 솔리드 바디를 만든 후, 추가 바로 가기 메뉴 명령을 사용하여 솔리드 바디를 조작할 수 있습니다.

물리적 도선 표시 및 물리적 도선 승차기 명령을 사용하여 솔리드 바디의 화면표시를 제어할 수 있습니다. 솔리드 바디는 생성 시 자동으로 표시되므로 물리적 도선 승차기 명령을 사용하여 새로 만들어진 바디를 숨길 수 있습니다. 물리적 바디의 표시를 변경해도 바디를 만드는 데 사용된 도선의 표시 상태에는 영향을 미치지 않습니다.

물리적 도선 삭제 명령을 사용하면 도선을 삭제하지 않고 솔리드 바디를 삭제할 수 있습니다.
다른 형식으로 와이어 하네스 출력

ECAD로 저장 명령을 사용하여 다른 ECAD 소프트웨어 시스템에서 사용할 수 있도록 와이어 하네스 컴퓨터 및 연결 정보를 저장할 수 있습니다. 이 정보는 ECAD 시스템 형식 또는 .XML 형식으로 내보낼 수 있습니다.

메모(Note)

이 명령은 속성이 지정된 도선에 대한 정보만 내보냅니다. 속성이 없는 경우는 파일에 포함되지 않습니다.

명령을 선택하면 ECAD로 저장 다이얼로그가 표시됩니다. 이 다이얼로그를 사용하여 정보를 저장할 형식을 지정할 수 있습니다. 컴퓨터의 이름, 위치 및 형식과 연결 파일을 지정할 수도 있습니다.

컴포넌트 파일에는 고유 ID, 컴퓨터 이름 및 컴퓨터 설명과 같은 와이어 하네스의 컴퓨터에 대한 정보가 포함됩니다. 컴퓨터 파일을 .CMP 또는 .CMP_XML 형식으로 저장할 수 있습니다.

연결 파일에는 와이어 ID, fromcomponentid 및 tocomponentid 같은 와이어 하네스의 연결에 대한 정보가 포함됩니다. 컴퓨터 파일을 .CON 또는 .CON_XML 형식으로 저장할 수 있습니다.
제 3 장 작업: 새 하네스 생성

이 작업은 여러 와이어, 케이블 및 변들이 포함되어 있는 하네스 생성 설계에 대해 안내합니다.

작업을 보려면 부록 A로 이동하십시오.
부록 A 작업: 하네스 설계를 사용하여 와이어 하네스 생성

작업 파일 열기

• 어셈블리 harness.asm을 엽니다.
부록 A
작업: 하네스 설계를 사용하여 와이어 하네스 생성

하네스 설계 환경 열기

- 도구 탭→환경 그룹→하네스 설계를 클릭합니다.

와이어 하네스 환경이 표시됩니다. 리본에는 와이어 하네스 도선(와이어, 케이블 또는 번들)을 생성하는데 사용하는 명령이 있습니다.

이 작업의 대부분에서 PathFinder를 사용합니다.
어셈블리 파트 활성화

이 작업을 진행하려면 어셈블리의 파트를 활성화해야 합니다. 사용자 시스템에 따라 어셈블리 내 모든 파트가 활성화되어 있지 않을 수도 있습니다.

• 파트를 활성화하려면 PathFinder에서 harness.asm 항목을 마우스 오른쪽 버튼으로 클릭한 다음 바로 가지 메뉴에서 활성화를 클릭합니다.
부록 A 작업: 하네스 설계를 사용하여 와이어 하네스 생성

콘솔 파트 숨기기

- PathFinder에서 Console1.par 항목 위에 커서를 위치시킨 다음 마우스 오른쪽 버튼 을 클릭하여 바로 가기 메뉴를 표시합니다.
- 바로 가기 메뉴에서 숨기기를 클릭하여 콘솔 파트를 숨깁니다.
하네스 마법사 시작

하네스 마법사는 가져온 net list 파일에 포함된 정보를 기반으로 하네스 설계를 자동으로 생성할 수 있는 세 개의 대이어로그로 구성됩니다.

- 리본에서 홈 탭 → 마법사 그룹 → 하네스 마법사를 클릭합니다.
부록 A

작업: 하네스 설계를 사용하여 와이어 하네스 생성

하네스 마법사 정보 입력 - 3단계 중 1단계

[Image of a software interface with options for selecting files and paths]

하네스 마법사 - 3단계 중 1단계 다이얼로그에서 다음을 지정합니다.

- eCAD net list 파일 형식
- 하네스를 만드는 데 사용되는 컴퓨터 문서
- 하네스를 만드는 데 사용되는 도선 문서
 - 문서 목록에서 예제를 선택합니다.
 - 컴퓨터 문서 상자에서 찾아보기 버튼을 사용하여 작업 파일이 포함된 폴더에서 harness1.cmp을 선택합니다.
 - 연결 문서 상자에서 찾아보기 버튼을 사용하여 작업 파일이 포함된 폴더에서 harness1.con을 선택합니다.
 - 다음 버튼을 클릭합니다.
하네스 마법사 정보 입력 - 3단계 중 2단계

하네스 마법사 - 3 단계 중 2 단계

연결된 어커런스 이름 셀을 마우스 오른쪽 단추로 클릭하여 파트 문서를 열니다. 컴퓨터에서 할당 또는 어커런스 할당을 클릭하여 이미 채워진 아이템을 정의합니다.

<table>
<thead>
<tr>
<th>고유 ID</th>
<th>컴퓨터 이름</th>
<th>컴퓨터 설명</th>
<th>상대</th>
<th>어커런스 이름</th>
</tr>
</thead>
<tbody>
<tr>
<td>296</td>
<td>G1</td>
<td></td>
<td>채워짐</td>
<td><code>gauge1.par:1</code></td>
</tr>
<tr>
<td>319</td>
<td>SW-1</td>
<td></td>
<td>채워짐</td>
<td><code>Rocker1.par1</code></td>
</tr>
<tr>
<td>370</td>
<td>Volume1</td>
<td>채워짐</td>
<td></td>
<td><마우스 오른쪽 단추로 클릭하여></td>
</tr>
<tr>
<td>421</td>
<td>SW-1</td>
<td>채워짐</td>
<td></td>
<td><code>Rocker1.par2</code></td>
</tr>
<tr>
<td>481</td>
<td>Plug 14</td>
<td>채워짐</td>
<td></td>
<td><code>plug14.par1</code></td>
</tr>
</tbody>
</table>

하네스 마법사 - 3단계 중 2단계 다이얼로그에는 와이어 하네스를 만드는 데 사용되는 컴퓨터에 대한 정보가 표시됩니다. 다이얼로그에는 다음 작업을 수행할 수 있는 명령과 옵션이 포함되어 있습니다.

• 컴퓨터 할당.
• 어커런스 할당.
• 컴퓨터 채우기.

컴포넌트 Volume1은 ‘채워지지 않음’ 상태입니다. 이는 컴퓨터가 파트에 할당되지 않았음을 나타냅니다. 일반적으로 마법사를 시작하기 전에 터미널 할당 명령을 사용하여 컴퓨터 및 터미널을 할당합니다. 그러나 완료되지 않으면 마법사 내에서 이러한 할당을 수행할 수 있습니다.

• Volume1이 포함된 행을 마우스 오른쪽 버튼으로 클릭하고 컴퓨터 할당을 클릭합니다.
• 그래픽 워드우에서 그림과 같이 Potentiometer2.par을 클릭합니다.
부록 A
작업: 하네스 설계를 사용하여 와이어 하네스 생성

다이얼로그가 업데이트되어 Volume1의 상태가 채워진 것으로 나타납니다.

다음 버튼을 클릭합니다.
하네스 마법사 정보 입력 - 3단계 중 3단계

<table>
<thead>
<tr>
<th>종류</th>
<th>원본</th>
<th>시작</th>
<th>대상</th>
<th>절</th>
<th>케이블</th>
<th>상태</th>
<th>설명</th>
<th>Solid Edge 속성</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wir...</td>
<td>421</td>
<td>Common</td>
<td>481</td>
<td>10</td>
<td>접이</td>
<td>16-gage...</td>
<td>16-gage Stranded...</td>
<td></td>
</tr>
<tr>
<td>Wir...</td>
<td>370</td>
<td>a</td>
<td>481</td>
<td>6</td>
<td>미정의</td>
<td>16-gage...</td>
<td>16-gage Stranded...</td>
<td></td>
</tr>
<tr>
<td>Wir...</td>
<td>370</td>
<td>b</td>
<td>481</td>
<td>2</td>
<td>미정의</td>
<td>16-gage...</td>
<td>16-gage Stranded...</td>
<td></td>
</tr>
<tr>
<td>Wir...</td>
<td>319</td>
<td>Common</td>
<td>481</td>
<td>3</td>
<td>정의</td>
<td>16-gage...</td>
<td>16-gage Stranded...</td>
<td></td>
</tr>
<tr>
<td>Wir...</td>
<td>319</td>
<td>Closed</td>
<td>481</td>
<td>1</td>
<td>정의</td>
<td>16-gage...</td>
<td>16-gage Stranded...</td>
<td></td>
</tr>
</tbody>
</table>

하네스 마법사 - 3단계 중 3단계 다이얼로그는 와이어 하네스 생성에 사용되는 도선 정보를 표시합니다. 다이얼로그에 있는 명령으로 다음 작업을 수행할 수 있습니다.

- 터미널 할당.
- 하네스에서 와이어 삭제.
- 와이어 또는 케이블에 속성 할당.
- 하네스 미리 보기.

시작 터미널 세 개가 주황색으로 강조표시되며 상태는 미정의입니다. 이러한 터미널은 정의해야 할 Volume1 컴포넌트의 터미널을 나타냅니다.
부록 A

작업: 하네스 설계를 사용하여 와이어 하네스 생성

터미널 A 할당

지침의 설명을 클릭하여 연결 정의를 수정합니다. 경로를 선택하고 시작은 미리 볼니다. 마지막으로 마침 버튼을 클릭할 수 있습니다.

<table>
<thead>
<tr>
<th>경로</th>
<th>원본</th>
<th>시작</th>
<th>대상</th>
<th>끝</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wir...</td>
<td>421</td>
<td>Common</td>
<td>481</td>
<td>10</td>
</tr>
<tr>
<td>Wir...</td>
<td>370</td>
<td>a</td>
<td>481</td>
<td>6</td>
</tr>
<tr>
<td>Wir...</td>
<td>370</td>
<td>b</td>
<td>481</td>
<td>2</td>
</tr>
<tr>
<td>Wir...</td>
<td>319</td>
<td>Common</td>
<td>481</td>
<td>3</td>
</tr>
<tr>
<td>Wir...</td>
<td>319</td>
<td>Closed</td>
<td>481</td>
<td>1</td>
</tr>
</tbody>
</table>

- 시작 터미널 a를 마우스 오른쪽 버튼으로 클릭하고 터미널 할당을 클릭합니다.
- 퀵도우 아래쪽의 상태 표시줄에서 영역 확대 버튼을 클릭합니다.
- 그림에 표시된 것과 같이 Potentiometer2.par의 옆쪽 위를 클릭한 다음 다시 오른쪽 아래를 클릭합니다. 이렇게 하면 뷰 영역으로 사용할 사각형이 정의됩니다.

마우스 오른쪽 버튼을 클릭하여 영역 확대 명령을 종료합니다.

원형 모서리를 클릭하여 터미널 a를 할당합니다.

모서리 (홀) (Potentiometer2.par)
작업: 하네스 설계를 사용하여 와이어 하네스 생성

터미널 B 할당

<table>
<thead>
<tr>
<th>경</th>
<th>원본</th>
<th>시작</th>
<th>대상</th>
<th>끝</th>
<th>게이</th>
<th>상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wir</td>
<td>319</td>
<td>Open</td>
<td>481</td>
<td>8</td>
<td></td>
<td>정의</td>
</tr>
<tr>
<td>Wir</td>
<td>319</td>
<td>Closed</td>
<td>481</td>
<td>1</td>
<td></td>
<td>정의</td>
</tr>
<tr>
<td>Wir</td>
<td>319</td>
<td>Common</td>
<td>481</td>
<td>3</td>
<td></td>
<td>정의</td>
</tr>
<tr>
<td>Wir</td>
<td>370</td>
<td>b</td>
<td>481</td>
<td>2</td>
<td>미정의</td>
<td></td>
</tr>
<tr>
<td>Wir</td>
<td>370</td>
<td>a</td>
<td>481</td>
<td>6</td>
<td></td>
<td>정의</td>
</tr>
</tbody>
</table>

- 시작 터미널 b를 마우스 오른쪽 버튼으로 클릭하고 터미널 할당을 클릭합니다.
- 원형 모서리를 클릭하여 터미널 B 할당합니다.
A-12 하네스 설계를 사용하여 하이어 하네스 생성

부록 A: 작업: 하네스 설계를 사용하여 하이어 하네스 생성

터미널 C 할당

- 시작 터미널 c를 마우스 오른쪽 버튼으로 클릭하고 터미널 할당을 클릭합니다.
- 원형 모서리를 클릭하여 터미널을 할당합니다.
- 마침 버튼을 클릭하여 마법사를 완료합니다.
뷰 맞춤

- 뷰 탭→방향 그룹→맞춤 명령을 클릭하여 윈도우에서 어셈블리를 맞춥니다.
PathFinder 보기

> PathFinder에서 와이어 항목 근처의 + 심볼을 클릭합니다.

하네스 마법사로 만든 모든 와이어에 대해 항목이 추가되었음을 확인할 수 있습니다.
번들 만들기

번들 명령을 사용하면 와이어 및 케이블 세트로 하네스 번들을 만들 수 있습니다. 결과로 하네스 어셈블리 내 여러 컴포넌트를 잇는 단일 경로가 생성됩니다. 경로를 정의하려면 점을 정의하여 새로운 경로를 생성해도 되고 경로 명령으로 생성한 기존 경로를 선택해도 됩니다. 이 번들에서는 경로가 이미 생성되어 있습니다.

- PathFinder에서 경로 항목 옆에 있는 화살표를 클릭합니다.

- Path 1을 마우스 오른쪽 버튼으로 클릭하고 바로 가기 메뉴에서 표시를 클릭합니다.

- 홈 탭→하네스 그룹→번들 명령 을 클릭합니다.

- 클릭한 다음 그림에 표시된 것처럼 plug14.par 주위에서 상자를 끌어서 번들에 포 함할 와이어를 선택합니다.

- 화인 버튼을 클릭합니다.

- 명령 모음에서 기존 경로 사용 버튼 을 선택합니다.
부록 A 작업: 하네스 설계를 사용하여 와이어 하네스 생성

▸ 그림과 같이 기존 경로를 클릭합니다.

▸ 확인 버튼을 클릭합니다.
▸ 미리보기를 클릭한 다음 마침을 클릭합니다.
작업: 하네스 설계를 사용하여 와이어 하네스 생성

하네스 마법사 명령 다시 선택

어셈블리에서 다른 와이어 세트를 배치하려면 하네스 마법사를 사용해야 합니다.

▸ 홈 탭→마법사 그룹→하네스 마법사 버튼을 클릭합니다.
▸ 하네스 마법사 - 3단계 중 1단계 다이얼로그에서 다음을 수행합니다.
▸ 문서 목록에서 예제를 선택합니다.
▸ 컴퓨터 문서 상자에서 찾아보기 버튼을 사용하여 harness2.cmp를 선택합니다.
▸ 연결 문서 상자에서 찾아보기 버튼을 사용하여 harness2.con을 선택합니다.
▸ 다음 버튼을 클릭합니다.
▸ 하네스 마법사 - 3단계 중 2단계 대화 상자에서 다음 버튼을 클릭합니다.
▸ 하네스 마법사 - 3단계 중 3단계 다이얼로그에서 마침 버튼을 클릭합니다.
어셈블리 화면표시 변경

> 윈도우 아래쪽의 상태 표시줄에서 보이는/숨겨진 모서리 버튼을 클릭합니다.
어셈블리에서 확대

- 윈도우 아래쪽의 상태 표시줄에서 영역 확대 버튼을 클릭합니다.
- 그림과 같이 `plug4.par` 주위에서 상자를 끼웁니다. 이렇게 하면 브 영역으로 사용할 사각형이 정의됩니다.
- 마우스 오른쪽 버튼을 클릭하여 영역 확대 명령을 종료합니다.
부록 A 작업: 하네스 설계를 사용하여 와이어 하네스 생성

와이어 만들기

홈 탭→하네스 그룹→와이어 명령 を 클릭합니다.
와이어의 첫 번째 점 선택

- 경로 생성 버튼이 선택되어 있는지 확인합니다.
- 키포인트 위치 버튼을 클릭합니다.
- 키포인트 버튼을 클릭합니다. 키포인트 목록에서 중심점을 선택합니다.
- 그림에 표시된 중심점을 찾아 해당 점이 강조 표시되면 클릭하여 선택합니다.
부록 A 작업: 하네스 설계를 사용하여 와이어 하네스 생성

뷰 맞춤

> 뷰 탭→방향 그룹→맞춤을 클릭하여 원도우에서 어셈블리를 맞춥니다.
위쪽 게이지 확대

- 영역 확대 명령 을 사용하여 표시된 영역을 확대합니다.
- 마우스 오른쪽 버튼을 클릭하여 영역 확대 명령을 종료합니다.
부록 A 작업: 하네스 설계를 사용하여 와이어 하네스 생성

와이어의 끝 점 선택

▸ 그림에 표시된 중심점을 찾아 해당 점이 강조 표시되면 클릭하여 선택합니다.

▸ 그림과 같이 터미널 위쪽에 커서를 놓고 마우스 오른쪽 버튼을 클릭하여 끝 점을 적용합니다.

▸ 그림과 같이 재료를 설정합니다.

▸ 미리보기 버튼을 클릭합니다.
와이어 마치기

> 마침 버튼을 클릭하여 와이어를 완료합니다.
부록 A 작업: 하네스 설계를 사용하여 와이어 하네스 생성

뷰 맞춤

- 뷰 탭→방향 그룹→맞춤을 클릭하여 윈도우에서 어셈블리를 맞춤니다.
어셈블리에서 확대

▸ 영역 확대 명령을 선택합니다.

▸ plug4.par을 확대합니다. 마우스 오른쪽 버튼을 눌러 명령을 종료합니다.
부록 A
작업: 하네스 설계를 사용하여 와이어 하네스 생성

다른 와이어 만들기

▸ 홈 탭→하네스 그룹→와이어 를 클릭합니다.
첫 번째 와이어를 생성할 때 사용한 것과 동일한 옵션을 사용합니다.
▸ 그림에 표시된 원형 모서리를 선택하여 와이어의 시작점을 정의합니다.

▸ 그림에 표시된 원형 모서리를 선택하여 와이어의 끝 점을 정의합니다.
• 그림과 같이 와이어 위치를 설정한 선택한 다음 확인 버튼을 클릭합니다.

• 그림과 같이 재료를 설정합니다.

• 미리보기 버튼을 클릭합니다.
작업: 하네스 설계를 사용하여 와이어 하네스 생성

와이어 마치기

- 마침 버튼을 클릭하여 와이어를 완료합니다.
뷰 맞춤

> 뷰 탭→방향 그룹→맞춤을 클릭하여 윈도우에서 어셈블리를 맞춥니다.
부록 A
작업: 하네스 설계를 사용하여 와이어 하네스 생성

케이블 만들기

▸ 홈 탭→하네스 그룹→케이블 명령 을 클릭합니다.
▸ 그림에 표시된 것처럼 plug4.par 주위에서 상자를 끌어서 케이블에 포함할 와이어를 선택합니다.

▸ 확인 버튼을 클릭합니다.
▸ 경로 생성 버튼 이 선택되어 있는지 확인합니다.
▸ 그림과 같이 경로를 만듭니다.
작업: 하네스 설계를 사용하여 와이어 하네스 생성

- 그림과 같이 재료를 22/15-gage Stranded Copper Gray로 설정합니다.

- 미리보기를 클릭한 다음 마침을 클릭합니다.
부록 A 작업: 하네스 설계를 사용하여 와이어 하네스 생성

뷰 쉐이딩

- 윈도우 아래쪽의 상태 표시줄에서 보이는 모서리 쉐이딩을 클릭합니다.
와이어 하네스의 솔리드 바디 만들기

▸ 홈 탭→선택 그룹→선택 도구 버튼 을 클릭합니다.

▸ PathFinder에서 하네스 항목을 마우스 오른쪽 버튼으로 클릭하여 바로 가기 메뉴를 표시합니다.

▸ 바로 가기 메뉴에서 물리적 도선 생성을 클릭합니다.

잠시 후에 하네스 도선의 솔리드 바디가 만들어집니다.
부록 A 작업: 하네스 설계를 사용하여 하이퍼 하네스 생성

뷰 방향 변경

- Ctrl+R을 눌러 뷰를 오른쪽 뷰에 정렬합니다.
어셈블리에서 확대

- 영역 확대 명령을 사용하여 그림과 같이 rocker1.par을 확대합니다.
부록 A 작업: 하네스 설계를 사용하여 와이어 하네스 생성

와이어 이동

- 위 그림에 강조표시된 경로 위에 커서를 놓은 다음 마우스를 맨추고 잠시 기다리면 여러 선택이 가능함을 알리기 위해 커서 이미지가 변경됨을 알 수 있습니다. 또한 커서 이미지는 어느 버튼을 클릭해도 QuickPick 목록이 열리는지도 표시합니다. 이 경우에는 마우스 오른쪽 버튼입니다.

- 마우스 오른쪽 버튼을 클릭하면 QuickPick 목록이 표시됩니다. Quickpick에서 각 항목 위로 커서를 이동하면 해당 면이 강조표시됩니다. Quickpick을 사용하면 필요하지 않은 요소를 잘못 선택하여 취소하는 과정을 반복하지 않고 필요한 요소를 한 번에 정확하게 선택할 수 있습니다.

- QuickPick을 사용하여 Wire 9를 정의하는 데 사용된 경로를 강조표시한 다음 마우스 오른쪽 버튼을 클릭합니다. 이 예제에서는 Path 25이지만 경로 이름이 다를 수도 있습니다. QuickPick에 여러 경로가 표시되는 경우 Rocker1.par의 어커린스에 가장 가까운 경로를 선택합니다.

- 바로 가기 메뉴에서 정의 편집을 클릭합니다.
작업: 하네스 설계를 사용하여 와이어 하네스 생성

- 그림과 같이 점을 클릭합니다.

- 그림과 비슷한 위치로 점을 근 다음 마우스 오른쪽 버튼을 클릭하여 와이어를 배치합니다.
부록 A

작업: 하네스 설계를 사용하여 와이어 하네스 생성

와이어 두 개 더 이동

- 이전 단계에서 설명한 방법대로 와이어 7을 정의하는 데 사용된 경로를 이동 합니다.
작업: 하네스 설계를 사용하여 와이어 하네스 생성

- 그런 다음 wire 8을 정의하는 데 사용된 경로를 이동합니다.

이들 와이어를 이동하면 와이어 하네스가 원 그림과 비슷한 모습이 됩니다.
부록 A 작업: 하네스 설계를 사용하여 와이어 하네스 생성

뷰 맞춤

▸ 뷰 탭→방향 그룹→맞춤을 클릭하여 윈도우에서 어셈블리를 맞춤니다.
뷰 방향 변경

> Ctrl+I를 눌러 뷰를 등각 뷰에 정렬합니다.
부록 A

작업: 하네스 설계를 사용하여 와이어 하네스 생성

숨겨진 파트 표시

• PathFinder에서 Console1.par 항목을 마우스 오른쪽 버튼으로 클릭한 다음 표시를 클릭합니다. 이렇게 하면 숨겨진 파트가 표시됩니다.
하네스의 와이어 숨기기

- PathFinder에서 와이어 항목을 마우스 오른쪽 버튼으로 클릭한 다음 숨기기를 클릭하여 와이어를 숨깁니다.
wa이어 하네스 보고서 만들기

어셈블리에 포함된 컴포넌트 및 연결이 나열된 보고서를 만들 수 있습니다.

▸ 도구 패→도우미 그룹→하네스 보고서를 클릭합니다.

▸ 하네스 보고서 다이얼로그에서 다음을 수행합니다.
 ▸ 연결 옵션을 선택합니다.
 ▸ 어셈블리에서 모든 하네스 연결을 선택합니다.
 ▸ 확인을 클릭하여 보고서를 생성합니다.
보고서 다이얼로그는 모든 케이블에 대한 와이어 경로 목록을 들어쓰기하여 표시합니다.

<table>
<thead>
<tr>
<th>와이어 ID</th>
<th>원본 컴포넌트</th>
<th>시작 컴포넌트</th>
<th>대상 컴포넌트</th>
<th>끝 컴포넌트</th>
<th>케이블 ID</th>
<th>와이어 상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire 7</td>
<td>319</td>
<td>Common</td>
<td>481</td>
<td>3</td>
<td>2.12 m</td>
<td></td>
</tr>
<tr>
<td>Wire 8</td>
<td>319</td>
<td>Closed</td>
<td>481</td>
<td>1</td>
<td>2.12 m</td>
<td></td>
</tr>
<tr>
<td>Wire 2</td>
<td>370</td>
<td>a</td>
<td>481</td>
<td>6</td>
<td>2.12 m</td>
<td></td>
</tr>
<tr>
<td>Wire 3</td>
<td>370</td>
<td>b</td>
<td>481</td>
<td>2</td>
<td>2.12 m</td>
<td></td>
</tr>
<tr>
<td>Wire 9</td>
<td>319</td>
<td>Open</td>
<td>481</td>
<td>8</td>
<td>2.12 m</td>
<td></td>
</tr>
<tr>
<td>와이어 15</td>
<td>502</td>
<td>3</td>
<td></td>
<td>케이블 1</td>
<td>3.41 m</td>
<td></td>
</tr>
<tr>
<td>와이어 16</td>
<td>502</td>
<td>4</td>
<td>381</td>
<td>케이블 1</td>
<td>3.41 m</td>
<td></td>
</tr>
<tr>
<td>Wire 20</td>
<td>502</td>
<td>3</td>
<td>314</td>
<td>left</td>
<td>2.12 m</td>
<td></td>
</tr>
<tr>
<td>Wire 21</td>
<td>502</td>
<td>2</td>
<td>314</td>
<td>right</td>
<td>2.12 m</td>
<td></td>
</tr>
<tr>
<td>Wire 1</td>
<td>370</td>
<td>c</td>
<td>481</td>
<td>11</td>
<td>2.12 m</td>
<td></td>
</tr>
<tr>
<td>Wire 10</td>
<td>295</td>
<td>positive</td>
<td>481</td>
<td>9</td>
<td>2.12 m</td>
<td></td>
</tr>
<tr>
<td>번들 5</td>
<td></td>
<td></td>
<td></td>
<td>번들 5</td>
<td>0.00 m</td>
<td></td>
</tr>
<tr>
<td>번들 5</td>
<td></td>
<td></td>
<td></td>
<td>케이블 1</td>
<td>6.58 m</td>
<td></td>
</tr>
<tr>
<td>Wire 11</td>
<td>295</td>
<td>negative</td>
<td>481</td>
<td>5</td>
<td>2.12 m</td>
<td></td>
</tr>
<tr>
<td>Wire 12</td>
<td>481</td>
<td>Open</td>
<td>481</td>
<td>14</td>
<td>2.12 m</td>
<td></td>
</tr>
</tbody>
</table>

이 설명에 내 모든 컴포넌트나 연결, 또는 현재 표시된 컴포넌트나 연결, 또는 현재 선택된 컴포넌트나 연결을 기반으로 보고서를 작성할 수 있습니다. 보고서는 저장하고 인쇄하고 클립보드에 복사할 수 있습니다.

- 보고서를 닫으려면 닫기 버튼을 클릭합니다.
부록 A 작업: 하네스 설계를 사용하여 와이어 하네스 생성

어셈블리 환경으로 돌아가기

• 도구 탭→닫기 그룹→하네스 닫기 버튼을 클릭합니다.
ファイル 저장

- 빠른 접근 도구 모음에서 저장 버튼을 클릭하여 문서를 저장합니다.

작업이 완료되었습니다

- 등록 정보 다이얼로그를 사용하여 와이어를 수정해 보십시오.
- 이로써 이 작업을 마쳤습니다.
부록 B 과정 복습

다음 질문에 답을 해야 합니다.
1. 하네스 설계에서 사용된 두 개의 설계 프로세스는 무엇입니까?
2. 와이어링 하네스 설계를 사용하여 어떤 와이어 유형을 생성할 수 있습니까?
3. ECAD net list 파일을 사용할 경우 정의된 데이터 형식은 어디에 있습니까?
4. 하네스 마법사에서 와이어 하네스를 생성하는데 사용되는 컴포넌트 문서를 지정하는 옵션은 무엇입니까?
5. 하네스 마법사에서 와이어 하네스를 생성하는데 사용되는 연결 문서를 지정하는 옵션은 무엇입니까?
부록 C 답변

1. 하네스 설계에서 사용된 두 개의 설계 프로세스는 무엇입니까?
 첫 번째 설계 프로세스에서는 2D 전기 회로가 먼저 개발되고 3D 모델이 회로에 대한 파생됩니다. 두 번째 설계 프로세스에서는 2D 회로가 없거나, 3D 모델과 함께 사용되지 않습니다.

2. 와이어링 하네스 설계를 사용하여 어떤 와이어 유형을 생성할 수 있습니까?
 라운딩 도선이 지원됩니다. 리본 케이블은 지원되지 않습니다.

3. ECAD net list 파일을 사용할 경우 정의된 데이터 형식은 어디에 있습니까?
 Solid Edge Program 폴더에 있는 SEHarness.txt 파일은 와이어 하네스를 만드는 데 사용되는 ECAD net list 파일의 데이터 형식을 정의합니다.

4. 하네스 마법사에서 와이어 하네스를 생성하는데 사용되는 컴포넌트 문서를 지정하는 옵션은 무엇입니까?
 컴포넌트 문서 옵션을 사용하면 와이어 하네스를 만드는 데 사용되는 컴포넌트 문서를 지정할 수 있습니다. 문서는 .CMP 또는 .CMP_XML 형식일 수 있습니다.

5. 하네스 마법사에서 와이어 하네스를 생성하는데 사용되는 연결 문서를 지정하는 옵션은 무엇입니까?
 연결 문서 옵션을 사용하면 와이어 하네스를 만드는 데 사용되는 연결 문서를 지정할 수 있습니다. 문서는 .CON 또는 .CON_XML 형식일 수 있습니다.
부록 D 과정 요약

이 과정에서는 와이어 하네스 단법사를 사용하여 ECAD 컴포넌트 문서 및 연결 문서를 열고, 와이어, 케이블을 정의하여 이에 따라 그룹화하는 방법에 대하여 알아봅니다. 하네스 보고서는 각 와이어와 관련된 등록 정보의 원본 및 대상을 정의하여 생성되었습니다.