
SIEMENSSIEMENSSIEMENS

Active Workspace
Customization

AW004 • 2.4

Contents

Part I: Customization overview

Client application history and considerations . 1-1

Active Workspace user interface . 2-1

Pattern-based design . 2-1
Interface overview . 2-1
Global navigation toolbar . 2-2
Location . 2-2
Active Workspace back button . 2-3
Context control . 2-4
Global search . 2-5
Sublocations and primary navigation tabs . 2-5
Sublocation content . 2-6
Work area toolbar . 2-6
Work area header . 2-7
Primary work area . 2-7
Navigation command set . 2-8
Secondary work area . 2-9
Secondary nagivation tabs . 2-10
Tools and information command set . 2-10
Tools and information panel . 2-11

Common coding patterns . 3-1

Code base consistency . 3-1
Logging . 3-1
Resources . 3-3
API visibility . 3-4
Message reporting . 3-5

Active Workspace extensibility . 4-1

Framework architecture . 5-1

Model-View-Presenter (MVP) . 5-1
Dependency injection . 5-2
Extensibility . 5-4
Component architecture . 5-5
Component contracts . 5-6
Managing components . 5-8

View model and data binding . 6-1

AW004 2.4 Active Workspace Customization 3

Contents

Model-View-Presenter (MVP) . 6-1
Active Workspace client MVP elements . 6-1
Repetitive code patterns . 6-2
Data binder . 6-2

Data binding framework . 6-2
Properties in the view and view model . 6-4
Collections in view and view model . 6-6

View model . 6-6
View . 6-8
Presenter . 6-11

Service-oriented archictecture (SOA) . 7-1

SOA goals . 7-1
Framework support for REST services . 7-2
Programming model . 7-2
AsyncCallback implementation best practice . 7-3
Code autogeneration and integration into the build system . 7-4
Client data model . 7-5
Object property policy . 7-5
SOA checklist . 7-8

Client data model and the meta system . 8-1

Client data model . 8-1
Programmer-friendly interfaces . 8-1
Caching . 8-2
Events . 8-2

Active Workspace hosting . 9-1

FTSIndexer customization . 10-1

Overview of indexer customization . 10-1
Indexer customization prerequisites . 10-1
Further information . 10-2

Part II: Customization examples

Simple examples . 11-1

Simple example overview . 11-1
Configuring the home page . 11-1

Overview of the home page configuration . 11-1
Reset the home page . 11-2
Protect a tile . 11-5
Hide a tile . 11-7
Create a new collection . 11-8
Add a tile to a collection . 11-8
Create a new tile type . 11-9
Create a tile template that creates a Part . 11-11
Action styles . 11-13

4 Active Workspace Customization AW004 2.4

Contents

Contents

Theme index . 11-13
Tile sizes . 11-13
Provided icons . 11-14

Configuring page layout using style sheets . 11-15
Introduction to using XML rendering templates (XRT) with Active Workspace 11-15
Considerations for using XRTs in Active Workspace . 11-16
Configure the information panel using XRTs . 11-17
Active Workspace-specific style sheets . 11-18
Modular style sheets . 11-19
Working with HTML panels in XRT . 11-20

Examples using code scaffolding . 12-1

Code scaffolding overview . 12-1
Use generateModule to create a new module . 12-1
Creating custom themes . 12-4

Cascading style sheets (CSS) in Active Workspace . 12-4
Custom theme overview . 12-6
Theme CSS classes . 12-8
Edit the CSS live . 12-8
Add a new theme to your module . 12-9

Contributing commands . 12-9
Command contribution constructs . 12-9
Command types . 12-11
One-step commands . 12-12
AbstractCommandHandler base class . 12-12
GIN binding command handlers . 12-13
Example: command to launch a web page . 12-14
Add a new one-step command to your module . 12-16

Type icons . 12-17
Type icon overview . 12-17
Add a new type icon to your module . 12-17

Locations and sublocations . 12-18
Location and sublocation overview . 12-18
Add a new location or sublocation to your module . 12-18

Navigation panel . 12-19
Navigation panel overview . 12-19
Add a new navigation panel to your module . 12-21

Tools and information panel . 12-22
Tools and information panel overview . 12-22
Add a new tools and information panel to your module . 12-24

Using property widgets . 13-1

Property widget overview . 13-1
Common widget features . 13-1
Standard Active Workspace widgets . 13-2

StringTextBoxWidget . 13-2
StringTextAreaWidget . 13-2
LabelWidget . 13-2
BooleanCheckBoxWidget . 13-2

AW004 2.4 Active Workspace Customization 5

Contents

Contents

BooleanRadioBoxWidget . 13-3
BooleanToggleButtonWidget . 13-3
IntegerTextBoxWidget . 13-3
DoubleTextBoxWidget . 13-3
ObjectLinkPropertyWidget . 13-3
DateWidget . 13-4

Property widget examples . 13-5
Property widget examples overview . 13-5
Add property widgets . 13-7
Define the view . 13-10
Provide data binding to property widgets . 13-11

Figures

Selecting a user’s tile collection . 11-3
Selecting a tile in a user’s tile collection . 11-4
Repin a tile . 11-5
Expanding a user’s tile collection . 11-6
Protect a tile . 11-7
Searching for Active Workspace style sheet preferences in the rich client 11-15
Searching for style sheet files in the rich client . 11-16

6 Active Workspace Customization AW004 2.4

Contents

Part I: Customization overview

AW004 2.4 Active Workspace Customization

Chapter 1: Client application history and considerations

Two technology trends revolutionized client applications and application delivery to consumers.

• The use of tablet and touch-based devices.

• The emergence of HTML5 and CSS as a viable cross-platform, cross-browser client platform.

The tablet market introduced new operating systems, such as iOS, Android, Windows 8, as well as
new application development technologies and environments. These technologies bring a new focus
on usability and a variety of new development paradigms that cross these platforms. Application
developers must build the same application using multiple, different technologies, and many are
turning to HTML5 and CSS3.

• Contemporary mobile platforms and browsers support HTML5-based rich applications on desktop
platforms and mobile devices.

• The Active Workspace client framework leverages these technologies to deliver superior user
experience to you on your platform of choice.

Usability

The Active Workspace client framework presents Teamcenter and its applications in an intuitive user
interface, rather than the traditional interfaces and applications that targeted expert users.

Active Workspace explicitly reduces exposure of complexity and, as a result, presents an uncluttered
graphical user interface (GUI) that is engaging and fluid.

Applications typically face challenges in defining user interaction models.

• When an interface is defined for a casual or infrequent user, the experienced user may find the
interface slow or inefficient.

• When the interface is optimized for the sophisticated user, the casual user finds it complex and
overwhelming.

The goal of Active Workspace is an intuitive interface for all levels of users.

When you customize Active Workspace, keep this in mind as you create your new content.

Performance

Many factors contribute to application performance, and Active Workspace provides the best possible
performance to the end user.

• The Active Workspace framework provides efficient service-oriented architecture (SOA) APIs that
use a JavaScript Object Notation (JSON) payload.

AW004 2.4 Active Workspace Customization 1-1

http://html5test.com/

Chapter 1: Client application history and considerations

• The Active Workspace client is optimized to ensure individual user gestures generate as few
server calls as possible—in most cases one or none. This makes the client very tolerant of
latency operating over a wide-area network (WAN).

• The Active Workspace client is designed to work with the Teamcenter File Management System
(FMS) to bring the same level of efficiency that FMS provides to installed clients in the HTML5
environment.

Deployment

The Active Workspace client eases deployment of PLM clients by requiring no installation or plug-ins.

This reduces cost of ownership, and lets you rapidly deploy new versions of the software as needed.

Mobile readiness

Active Workspace is touch-friendly to enable mobile platforms. Be certain to test your customizations
on a variety of platforms, including tablets and other portable or touch-enabled devices.

Configurability

Teamcenter is deployed in many industries and configured to meet the needs of specific enterprises.

The Active Workspace user interface is designed to be:

• Sensitive to the needs of different user groups, roles, projects, and programs.

• Configurable, extensible, and modular.

You can deploy only the applications and capabilities that you need. You can configure the graphical
user interface (GUI) to meet your needs using the extensibility built into the Teamcenter platform,
such as Teamcenter XML rendering templates (XRTs) and the client framework. You can also add
new components to the system using the published extension mechanisms and API.

Common User Experience

In addition to primary clients, Teamcenter has many client integrations. You can bring Teamcenter to
users in a familiar application.

Active Workspace components can be embedded in many applications with full support for seamless
interoperability. This provides a consistent user interface across integrations and applications and
supports users by providing Teamcenter functionality in commonly used applications.

Technology and GWT

Active Workspace uses HTML5, CSS3 and JavaScript. This lets you build on mature, open standards
that are robust, flexible, and that work across all supported platforms.

A goal of Active Workspace is to provide a foundation for a very large enterprise application, and
to support well-defined, published contracts with a clear deprecation policy. These and other
considerations led to the use of Google Web Toolkit (GWT) as the underlying technology for Active
Workspace.

1-2 Active Workspace Customization AW004 2.4

Chapter 1: Client application history and considerations

Client application history and considerations

The GWT SDK provides a set of core Java APIs and web-based user interface (UI) widgets. These
allow you to write AJAX applications in Java and then compile the source to optimized HTML5, CSS3,
and JavaScript that runs across all supported browsers.

At the core of GWT are two fundamental capabilities:

• A cross-language compiler that takes code written in Java and compiles it into an optimized
JavaScript code.

The compiler provides hooks so client framework developers can add extension points through a
mechanism called deferred binding. Deferred binding supports advanced use cases by providing
autogeneration and code replacement based on considerations such as platform type.

• A development mode that supports live debugging of the Java code while it is running in the
browser.

AW004 2.4 Active Workspace Customization 1-3

Client application history and considerations

Chapter 2: Active Workspace user interface

Pattern-based design
Active Workspace presents a crisp, clear, intuitive user experience. The graphical user interface
(GUI) focuses on users’ needs and leverages the paradigm shift introduced by touch devices, while
still supporting those using a pointing device. Above all, the Active Workspace user interface (UI)
provides a consistent user experience across all different application areas.

To achieve these goals, Active Workspace uses a pattern-based design, similar to the approach
commonly used in software architecture. Based on experience and needs, a set of patterns are
defined and refined for various user scenarios. An inventory of patterns is created and guidelines
are developed for when to use these patterns.

UI patterns let Active Workspace developers build a compliant UI using common components.

Patterns apply in various categories:

• Some patterns apply across all applications, such as the defining layout of the application and the
global toolbar.

• Some patterns interact with data and across multiple domains, such as patterns for objects
shown as titles in a list view and XRT.

• Some patterns are specific to a use case, such as the application landing page (default start
page).

Note

Typically patterns specific to a use case provide few opportunities for reuse but are still
valuable for the application of standard practices to create a consistent user experience.

Interface overview
The Active Workspace interface consists of two main areas.

AW004 2.4 Active Workspace Customization 2-1

Chapter 2: Active Workspace user interface

1. Global navigation toolbar

2. Location

Global navigation toolbar
The global navigation toolbar is present on all pages of the GUI. It has two areas.

1. Global navigation buttons are commands that are common and useful across all the pages
in the GUI.

2. The logo area displays branding information.

Note

Below the toolbar, a progress indicator is displayed when Active Workspace communicates
with the Teamcenter server.

Location
A location defines a page that supports a set of closely related functions and workflows. Each
location includes the following:

• A title that provides a page name

• A unique NameToken identifier

2-2 Active Workspace Customization AW004 2.4

Chapter 2: Active Workspace user interface

Active Workspace user interface

Note

If a location allows contributions, this identifier is published.

• One or more sublocations

1. Active Workspace back button

2. Context control

3. Name of the current location

4. Primary navigation tabs

5. Global search

6. Sublocation

Active Workspace back button
All locations have an Active Workspace back button that allows users to move to previously visited
locations such as Search, My Changes, or an open object.

AW004 2.4 Active Workspace Customization 2-3

Active Workspace user interface

Chapter 2: Active Workspace user interface

The Active Workspace back button differs from a browser back button. A browser back button moves
through each URL that was displayed in the browser address bar, while the Active Workspace button
moves to the previously visited location but not tabs. The behavior of the Active Workspace back
button allows a user to quickly navigate from My Changes to a target object and back, irrespective of
the intermediate steps they may have taken to look at various tabs of information on the target object.

Note

Active Workspace includes the active tab within a location and can include information such
as browser address bar URL content. This supports browser refresh and URL sharing with
little or no page changes.

Context control
A context control is present on every location in the GUI. It allows the user to view their profile, log
out, and change context information: current project or program, group and role, and the revision rule
for selecting the specific revisions.

2-4 Active Workspace Customization AW004 2.4

Chapter 2: Active Workspace user interface

Active Workspace user interface

Global search
The search box is present on all locations for full-text searches. The user can enter any search
string and perform a search. Performing a search changes the location to the Search location and
presents the objects that meet the search criteria.

Sublocations and primary navigation tabs
A sublocation defines the content of the location and how it is presented. Sublocation names are
presented as the primary navigation tabs.

• Users navigate between sublocations by using the primary navigation tabs.

• When a location has only one sublocation, the tabs are not displayed.

When the location is a Teamcenter business object (part, document, or change, for example), the
sublocation tabs are defined by the object's XML rendering template (XRT).

Each sublocation has a unique URL. The URL can be used to navigate to the sublocation. The
component contributing the location and sublocation defines this URL.

Note

It is a best practice to use a namespace for these URL fragments to prevent collisions across
contributions from multiple, independent components.

AW004 2.4 Active Workspace Customization 2-5

Active Workspace user interface

Chapter 2: Active Workspace user interface

Sublocation content
Each sublocation has a unique NameToken identifier used to contribute its content.

Content can be contributed by either of the following:

• The component that defines the sublocation can contribute content to the sublocation.

• Other components can contribute content to the sublocation using the published identifier.

In either case, each sublocation defines its own content that is unique to that sublocation.

1. Work area toolbar

2. Work area header

3. Primary work area

4. Navigation command set

5. Secondary work area

6. Secondary nagivation tabs

7. Tools and information command set

8. Tools and information panel

Note

This panel may be visible or hidden.

Work area toolbar
The work area toolbar contains tools that operate on the content in the work area, such as refresh,
add to favorites, and pin. The toolbar contains work area displays on the left and work area one-step
commands on the right.

2-6 Active Workspace Customization AW004 2.4

Chapter 2: Active Workspace user interface

Active Workspace user interface

Work area displays change the display of the content in the work area. For example, the work
area displays show the content as a list or table.

Work area one-step commands are commands that operate on selections within the work area.

• They do not require input from the user.

• They are aware of context and selection and are enabled and displayed based on those
conditions.

Components can contribute to work area displays and work area one-step commands.

• Commands can be reused and contributed to more than one sublocation.

• Command contributions must be constructed, so they are enabled and visible only as needed.

• Each command contribution specifies an ordering priority to express its position. The convention
used to specify the ordering priorities includes gaps, so other commands can be introduced
between existing commands without changing priorities.

Work area header
The work area header is displayed immediately below the work area toolbar.

This header is used for summary information such as the number of results a search has found. It
also displays the breadcrumb, which is used as an additional means of refining what is displayed.

Primary work area
The primary work area contains the rendered main content for the sublocation.

AW004 2.4 Active Workspace Customization 2-7

Active Workspace user interface

Chapter 2: Active Workspace user interface

The primary work area is defined by the sublocation and cannot be replaced by other components.

• A component can define how content is rendered in the primary work area.

• Siemens PLM recommends that customizers use the common widgets provided by the framework.

Note

Components and work areas can provide extension points that other components can
register and contribute to.

Navigation command set
Commands in the navigation command set apply to content in the primary and secondary work areas
or apply filters to the content in these work areas.

2-8 Active Workspace Customization AW004 2.4

Chapter 2: Active Workspace user interface

Active Workspace user interface

Components can contribute a navigation command to the navigation command set.

• When there are no contributions, the navigation command set is hidden.

• Contributions are registered to the sublocation unique NameToken identifier.

• Order priority is supported.

Secondary work area
The secondary work area typically shows the details of the content selected in the primary work area.

Other components can use the sublocation unique NameToken identifier to make contributions.
There can be zero or more contributions to a sublocation secondary work area.

AW004 2.4 Active Workspace Customization 2-9

Active Workspace user interface

Chapter 2: Active Workspace user interface

Secondary nagivation tabs
When multiple secondary work areas exist for a sublocation, they are shown as secondary navigation
tabs in the graphic user interface.

Priority ordering is defined by the contributors. It is a best practice to leave gaps.

Tools and information command set
Commands in the tools and information command set operate on the content in the primary or
secondary work areas and require user input.

• Components can contribute to the tools and information command set.

• When there are no contributions, the tools and information command set is hidden.

• Contributions are registered against the sublocation unique NameToken identifier.

• Order priority is supported.

2-10 Active Workspace Customization AW004 2.4

Chapter 2: Active Workspace user interface

Active Workspace user interface

Tools and information panel
This panel appears when a button from the tools and information command set is clicked. It provides
an area for information to be exchanged with the user.

Unlike one-step commands, many of the tools and information commands require user interaction,
such as Save As or Revise, Create Change, or Print.

AW004 2.4 Active Workspace Customization 2-11

Active Workspace user interface

Chapter 3: Common coding patterns

Code base consistency
The Active Workspace client framework provides common utilities and patterns for basic capabilities
that all client code leverages.

To ensure consistency across the client code base, follow the best practices for logging, resources,
API visibility, and message reporting.

For information about internationalization (I18N), see the following references:

• http://www.gwtproject.org/doc/latest/DevGuideI18n.html

• http://www.gwtproject.org/doc/latest/DevGuideUiBinderI18n.html

Logging
Logging is the process of recording events in an application to understand how the application runs
and to diagnose problems. Logging results in an audit trail that makes it easier to troubleshoot
issues encountered by developers and users.

You can log the following events:

• Entering and exiting of important functions. This is verbose, so log with the finest level.

• Important forks in application logic.

• All warnings and error messages.

For reference information abut logging, see the following references:

• http://docs.oracle.com/javase/7/docs/technotes/guides/logging/overview.html

• http://www.gwtproject.org/doc/latest/DevGuideLogging.html

Logging in the client follows the guidelines published in the GWT Development Guide for Logging.
The top-level application component controls the log levels and handlers for logging.

The relevant entries in the GWT module file, com.teamcenter.thinclient.ThinClient.gwt.xml, are:
<!-- Logging configuration -->
<!-- To change the default logLevel -->
<set-property name="gwt.logging.logLevel" value="FINE" />
<!-- To enable/disable logging -->
<set-property name="gwt.logging.enabled" value="TRUE" />
<!-- Disable the console handler -->
<set-property name="gwt.logging.consoleHandler" value="ENABLED"/>
<set-property name="gwt.logging.firebugHandler" value="ENABLED" />
<set-property name="gwt.logging.popupHandler" value="DISABLED" />

AW004 2.4 Active Workspace Customization 3-1

http://www.gwtproject.org/doc/latest/DevGuideI18n.html
http://www.gwtproject.org/doc/latest/DevGuideUiBinderI18n.html
http://docs.oracle.com/javase/7/docs/technotes/guides/logging/overview.html
http://www.gwtproject.org/doc/latest/DevGuideLogging.html

Chapter 3: Common coding patterns

The preceding configuration enables logging and sets the log level to FINE. The logging is output to
the JavaScript Console of the browser.

The following image shows the logging information in Chrome JavaScript Console.

Log level Description
SEVERE Indicates a serious failure.

SEVERE messages describe important events that prevent normal program
operation. These should be meaningful to end users and to system
administrators.

WARNING Indicates a potential problem.

WARNING messages describe events of interest to end users or system
managers, or which indicate potential problems.

INFO Informational messages are typically written to the console or its equivalent.
Use for significant messages for end users and system administrators.

CONFIG Provides static configuration information to assist in debugging problems that
may be associated with particular configurations. For example, a CONFIG
message can include the CPU type, the graphics depth, the GUI look-and-feel,
and so forth.

FINE Provides general information for developers who do not have a specialized
interest in the specific subsystem.

Messages generally include minor (recoverable) failures.

Issues indicating potential performance problems are also logged as FINE.
FINER Logs calls for entering, returning, or throwing an exception.
FINEST Provides a very detailed tracing message.

3-2 Active Workspace Customization AW004 2.4

Chapter 3: Common coding patterns

Common coding patterns

Note

FINE, FINER, and FINEST are intended for relatively detailed tracing. The output at the
three levels can vary between subsystems.

Use FINEST for voluminous detailed output, FINER for less detailed output, and FINE for
the fewest and most important messages.

• At run time, users can reduce, but not increase, log levels by adding the logLevel=<level>
query parameter to the URL, as shown.

http://<....>/ThinClient/ThinClient.html?logLevel=SEVERE

• If the log level in the gwt.xml file is set to FINE, you cannot log FINER messages by
setting the logLevel to FINER in the URL. The URL parameter can reduce the logging
level to log less to the console.

The framework provides an additional logging module in the com.siemens.splm.clientfx.base
project.

This module is used as part of the framework and enhances logging in the client as follows:

• Manages the Correlation Id value. Correlation Id:

o Changes when the history token is changed by navigation to a different page or when
a command is run.

o Is an identifier used to associate log entries that relate to a logical unit of activity, such as
the client, middle tier, and server.

• Provides a log formatter that adds the Correlation Id value to all log messages output.

Resources
Resources such as images and text files are commonly used in modules. These resources are
brought into the application by the ClientBundle functionality provided by GWT.

For information about ClientBundle functionality, see
https://developers.google.com/web-toolkit/doc/latest/DevGuideClientBundle.

For clients, place all resources in the resources subpackage of the GWT module.

• If the package name for your module is com.siemens.splm.clientfx.xyz, create a package named
com.siemens.splm.clientfx.xyz.resources to contain the resources for your GWT module.

• Create separate subpackages under resources for images and i18n resources.

• Add the resources folder to the source path in the GWT module's XML file, XYZ.gwt.xml.
<source path="resources"/>

The ClientBundle class, which provides the module with the information it needs to access the
resources, must be in the GWT module’s internal package because the resources are typically
private to the GWT module.

AW004 2.4 Active Workspace Customization 3-3

Common coding patterns

https://developers.google.com/web-toolkit/doc/latest/DevGuideClientBundle

Chapter 3: Common coding patterns

Command icons

Command icons are monochromatic to avoid distracting from the content.

• The style is flat without shadows.

• Typical icons use RGB 939393 to work well with various light and dark backgrounds.

• Image size varies by command type.

Command type Width and height (pixels)
Global toolbar command 18 x 18
Navigation command 32 x 32
One step command 22 x 22
Display command 22 x 22
Tool command 32 x 32

Note

Currently, there is no support for different icons per theme color.

API visibility
Modules publish APIs for other modules to consume.

• All classes in an internal package are internal to the GWT module and must not be referenced
outside the GWT module.

As a best practice, components must expose only the necessary API in published packages; this
is the component contract. The component contract must contain only the limited set of interfaces
that the component authors expect consumers of the component to use.

• All classes in the published package are published based on the ApiVisibility annotation on the
class or interface and its methods.

Maturity
Publish
scope Description

Experimental Internal The API is experimental and internal to Siemens PLM
Development and must not be used by modules that are not
authored by Siemens PLM Development.

Mature Internal The API is mature and internal to Siemens PLM Development and
must not be used by modules that are not authored by Siemens
PLM Development.

3-4 Active Workspace Customization AW004 2.4

Chapter 3: Common coding patterns

Common coding patterns

Maturity
Publish
scope Description

Experimental Public The API is experimental and public. It can be used outside the
GWT module by any internal, third-party, or customer module.

Because the API is still being developed, there is no deprecation
and the API can be modified or removed in the next build/version.
A replacement may not be provided for the API. Experimental
APIs that are removed or modified are listed in release notes.

Do not use an experimental API for production.
Mature Public The API is mature and public. It can be used outside the GWT

module by any internal, third-party, or customer module.

The API will not change. If changes are needed, the existing
API is deprecated and an alternative API is identified. The
alternative becomes available in the same version in which the
API is deprecated.

Release notes specify the time frame for removal of deprecated
API. The deprecation is typically two major releases of the client.

Message reporting
The framework provides classes and functionality to support messages that inform the user that an
action has occurred. The messages include the following:

• Error reporting, such as the partial or complete failure of a network call.

• Notification reporting, such as successful modification of an object state for a name change.

• Notification reporting, such as requesting user confirmation before proceeding with a delete
operation.

Use the following guide to determine when to use logging, error reporting, or notification reporting.

Report Audience Recommendation
Logging System

administrator
No translation or localization is required; this is internal
information.

Notification Client user The message should provide specific, detailed, and localized
information about expected results or should prompt the user for
confirmation prior to running some action.

AW004 2.4 Active Workspace Customization 3-5

Common coding patterns

Chapter 3: Common coding patterns

Report Audience Recommendation
Error Client user The message should provide specific, detailed, and localized

information to convey a user-related error, rather than internal
details.

The preferred form of an error message is:

object could not be action because reason.

object, action, and reason should be put into terms that the user
would recognize, not data model or process names.

The following message does not convey useful information to
the client users:

Call to SOA XYZ failed with status 3.

A more useful message would be:

Document123 could not be checked out because of a network
problem.

More detailed information about SOA and error codes should
be logged. These can also be made available to the user as
additional details.

The classes and interfaces provided by the framework for error and notification reporting services are
located in the :com.siemens.splm.clientfx.base.published package.

General usage

In the simplest case, error reporting can be accomplished using IMessageService.error(String
method).

/** Message Service */
@Inject
private IMessageService m_messageService;

// Check to see if this name is already in use.
SearchUtil.getSavedSearches(m_fullTextSearchService, new AsyncCallback>()
{

@Override
public void onFailure(Throwable caught)
{
m_messageService.error(SearchMessages.INSTANCE.getSavedSearchesFailed(), caught);

}
@Override
public void onSuccess(List<SavedSearch> result)
{

//…
}

});

The following overrides are also available:
public void report(IMessageContext ec, IMessageHandlerComplete cb)

3-6 Active Workspace Customization AW004 2.4

Chapter 3: Common coding patterns

Common coding patterns

IMessageContext

The IMessageContext interface is implemented by the MessageContext concrete class and
provides context information for the message being broadcast. A MessageContext instance contains
data for the following content.

Content Required or optional Description
severity optional: error by default Uses the Java logging level.
message required A brief message describes the error.
showModal optional: nonmodal by

default
Treat as a model dialog, and block other
actions until dismissed.

detailedMessage optional A detailed message describes the error.
exception optional Exception of type Throwable generated

when the error occurs.
navigationOptions optional Uses list<NavigationOption> to

represent button choices presented to the
user when the error is broadcast.

To define the navigationOptions object for notification or prompt reporting, use the following two
sets of keys to configure a dialog box.

• OkayCancelKeys

Display OK and Cancel buttons in the message dialog box.

• AbortRetryKeys

Display Abort and Retry buttons in the message dialog box.

For more information, see the example in IMessageHandlerComplete.

IMessageHandlerComplete

The IMessageHandlerComplete interface defines a callback invoked when the error dialog is
dismissed, such as when the user clicks OK or Cancel.

This interface requires the implementation of a single method:
void handled(IMessageContext notificationContext, Object
selectedNavigationOption);

The IMessageContext object is passed back with the NavigationOption object when the error
dialog is dismissed and with any state passed by:

• reportError(IMessageContext ec

• IMessageHandlerComplete cb

• Object state

The following example shows how IMessageHandlerComplete can be used:
void testErrorContext()
{

IMessageContext mc = getMessageService().createMessageContext();

AW004 2.4 Active Workspace Customization 3-7

Common coding patterns

Chapter 3: Common coding patterns

mc.init(Level.SEVERE, "message", false, "detailed info"); //$NON-NLS-1$ //$NON-NLS-2$

getMessageService().report(mc, new IMessageHandlerComplete()
{

@Override
public void errorHandled(IMessageContext mc, Object selectedNavigationOption)
{

assert state.equals("State"); //$NON-NLS-1$
assert selectedNavigationOption == null;

Window.alert("Error Done"); //$NON-NLS-1$
}

});
}

Prompting

The message service can also be used to prompt the user for confirmation before proceeding with
an action.

This type of prompt notification can be accomplished as follows:
getMessageService().prompt(mc, new IMessageHandlerComplete()
{

@Override
public void notificationHandled(IMessageContext ec, Object selectedNavigationOption,

Object state)
{

if(selectedNavigationOption != null)
{

NavigationOption navigationOption = (NavigationOption) selectedNavigationOption;
if((OkayCancelKeys) navigationOption.getKey() == OkayCancelKeys.OK)
{

IOperationsInjector.INSTANCE.getOperationManager().schedule(operation);
}

}
}

});

Note

You must create the IMessageContext interface containing information about the prompt and
provide an IMessageHandlerComplete callback that lets you take some action based on
the user response to the prompt.

The following overrides are available for notify and prompt:
/**
* Reports a notification to the user and prompts them for feedback via navigation
* options specified in the MessageContext.
*
* @param notificationContext - notification context information
* @param callback - callback to notify when notification has been accepted by user.
* Can be null if no completion status is required.
*/
void prompt(IMessageContext notificationContext, IMessageHandlerComplete callback);

/**
* Reports an notification to the user. This is used to provide a "toast-like" notification message.
*
* @param message - message to display. No options are displayed to user.
*/
void notify(String message);

3-8 Active Workspace Customization AW004 2.4

Chapter 3: Common coding patterns

Chapter 4: Active Workspace extensibility

Active Workspace extensibility provides a modular basis for extending capability within Active
Workspace user interface (UI) paradigms. Active Workspace extensibility is implemented on top of
Google’s Dependency Injection (GIN) for GWT and uses a subset of Guice binding language.

Dependency injection creates and implements dependent objects and makes it easier to test.
Dependent objects get dynamically injected by the framework.

Client extensibility involves:

• Extension points

Hook points declared by a component for extensibility.

• Extension

A contribution made by a component to an extension point defined by the same or another
component. Think of an electric plug on an electric appliance that plugs in to the electric socket
in the wall.

Helper classes

Various helper classes exist for contributing extensions to extension points. The classes are
exposed in the published package for a component. Most helper classes follow the form:
[ExtensionPointName]ExtensionPointHelper. For example, TypeIconExtensionPointHelper is a
helper utility class used to contribute custom type icons to the TypeIconModuleRegistry class.

Config module

All extensibility is configured in the component config module configure() method.

Note

The config module is often a subclass of AbstractGinModule.

AW004 2.4 Active Workspace Customization 4-1

https://code.google.com/p/google-gin/

Chapter 4: Active Workspace extensibility

The config module maps interfaces to implementations for presenters, views, commands, and
sublocations.

• Dependencies are bound together.

• Extension points are declared.

• Extensions are contributed to extension points.

4-2 Active Workspace Customization AW004 2.4

Chapter 4: Active Workspace extensibility

Chapter 5: Framework architecture

Model-View-Presenter (MVP)
With any large scale user interface (UI) application you need to set up a pattern to provide a workable
separation of concerns (SOC). Without this, the code becomes complex and hard to manage and
maintain. MVP is one of the many design patterns that are available to help model the UI in an
application.

The Active Workspace client framework uses MVP as its core design pattern to handle the UI.

• The model encapsulates all the data as well as the methods to query or change the data.

It provides notifications when the state in the model changes.

• The view contains the UI components that display the content of the model for the user and
provides the required user interaction controls.

There is no business logic within the view. It forwards any user actions from the UI components
to the presenter to handle.

• The presenter contains all the logic for the application.

The presenter controls the life cycle of the view and handles the user interaction events from
the controls within the view.

A number of frameworks are available that provide an MVP framework on top of GWT.

Articles that provide a detailed insight into the pattern with examples include:

AW004 2.4 Active Workspace Customization 5-1

Chapter 5: Framework architecture

• http://www.wildcrest.com/Potel/Portfolio/mvp.pdf

• http://www.gwtproject.org/articles/mvp-architecture.html

• http://www.gwtproject.org/articles/mvp-architecture-2.html

Dependency injection
Software is composed of many objects that interact with each other to provide the needed behavior.

Many ways exist for one object to find or use another object:

Instantiate the dependent object and use it

This results in very tight coupling as it adds dependencies on concrete implementation classes.

The direct, compile-time dependency on the concrete implementation class means that you cannot
test the client code (class A) mocking (substituting in) different states of the concrete implementation
class.

Use a factory to instantiate the dependent object

This approach decouples the client code and implementing class.

• The client code calls on the factory to instantiate the interface.

• The factory provides static methods to get and set mock (substitute) implementations for
interfaces.

• A factory is implemented with some boilerplate code.

5-2 Active Workspace Customization AW004 2.4

Chapter 5: Framework architecture

http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://www.gwtproject.org/articles/mvp-architecture.html
http://www.gwtproject.org/articles/mvp-architecture-2.html

Framework architecture

Note

When you use a factory to instantiate the dependent object, the code can be unwieldy because
the factory must retain mock implementations for testing. Test cases must ensure that they
remove the mock in their tear down methods; otherwise, they can impact other test cases

Manual dependency injection

With manual dependency injection, the client code does not look up the dependencies. The
dependencies are passed into the constructor of the client.

• The client code does not need to know how to look up the factory or instantiate the concrete class.

• The dependencies are moved to the calling code.

• For testing the code, the test module can provide mock, or testing, classes as inputs to the
component. This makes the test cases simpler.

AW004 2.4 Active Workspace Customization 5-3

Framework architecture

Chapter 5: Framework architecture

Note

The drawback of this approach it that the caller of the client code has to look up the
dependencies.

Automatic dependency injection

• A configuration file specifies the implementation class to use for an interface.

• The caller of the client or the client code does not have to look up the dependencies.

• Tests can use a different configuration file to get mock instances.

Note

Dependency injection frameworks such as Spring and Google Guice, use configuration files
(XML, annotations, binding) to define the binding of an implementation to the contract. At
run time, the framework uses byte code manipulation to construct and provide the right
implementation class to the component that needs it.

GIN (GWT injection (http://code.google.com/p/google-gin/) provides automatic dependency
injection for GWT applications by leveraging GWT compile time generator support. The Active
Workspace client framework leverages GIN to provide dependency injection.

Extensibility
Extensibility is a system design principle where the implementation considerations future growth.
Extensions can be made through the addition of new functionality or through modification of existing
functionality. The goal is to support change while minimizing impacts to existing system functions.

The system must be designed to include hooks and mechanisms to expand and enhance the system
with anticipated capabilities, without having to make major changes to the system infrastructure.

Teamcenter is a vast system that provides a rich set of functionality to meet customer needs in
product lifecycle management.

5-4 Active Workspace Customization AW004 2.4

Chapter 5: Framework architecture

http://code.google.com/p/google-gin/

Framework architecture

• Most implementations do not incorporate all provided, out-of-the-box (OOTB) functionality. Based
on domain and specific needs, most implementations require only a subset of the provided
functionality.

• Many implementations require incorporation of components from third-party developers into
the installation.

• When OOTB or third-party components do not provide needed functionality, you can build
components and add them to your installation.

• If you need to configure OOTB, third-party, and custom components, the Active Workspace client
framework lets you extend and configure components as part of the framework.

The goals for the extensibility in the Active Workspace client include:

• Allow components to define well-bounded extension points.

• Support zero, single, or multiple extensions for extension points.

• Support asynchronous loading of extensions to ensure that the code behind extensions are
loaded only when needed.

• Reduce coupling between application and its components.

• Support a deprecation policy for published extension points.

• Allow components to define and attach extensions to their own or dependent component
extension points.

Note

Extensions are used only if the component is part of the overall application.

The Active Workspace client extensibility framework:

• Is designed to let modules provide extension points or interfaces that the dependent modules can
extend. This supports decoupling of the application and its components.

• Is based on the Dependency Injection capabilities provided by Google GIN framework
(http://code.google.com/p/google-gin/wiki/GinTutorial). GIN is enhanced by the framework to
achieve the needs for extensibility in the Active Workspace client.

Component architecture
The Active Workspace client is built on a component-based vision of a software factory and its
development process. The foundation of the factory is built on modularity and the definition of clear,
well-defined, managed contracts across the boundaries.

The modularity specification has five levels of granularity:

• Class

AW004 2.4 Active Workspace Customization 5-5

Framework architecture

http://code.google.com/p/google-gin/wiki/GinTutorial

Chapter 5: Framework architecture

At the lowest level is a class (that is a Java class in the GWT client) or a resource (for example,
image, css, text, and so on).

• Package

A package, at the next level, provides a namespace for qualifying the class or resource. It is also
a means to group the class or resources that are closely related together.

• Module

A module is a group of packages. In the client, this corresponds to the GWT module construct. A
module is the smallest deployable artifact in this architecture.

• Component

The component provides a set of functionality that satisfies a set of use cases. The functionality
can be implemented by using multiple modules that are within the component. The component is
the smallest managed software artifact.

o Components are coarse grained, such as Search and Change Management.

o Components are managed as independent units of software.

o Components have versions and are managed individually.

o Components manage their dependencies explicitly, specifying the components they depend
on and the version of those components.

o Components publish explicit contracts. They have clear contracts and well-publicized and
managed deprecation policies.

Note

When a new version of a component is released, other components that have
dependencies on the new component can update to the new version as long as they only
rely on the published contract without any restrictions.

• Solution

A solution collects multiple components and is the smallest unit of deployment at an installation.
Solutions put together components to solve business problems for a well-defined domain and
user community.

Component contracts
Each component has a well-defined contract.

• The contract consists of artifacts and behaviors that the component exposes to satisfy the stories
it supports.

• A contract is any semantic that the component exposes, such as APIs, resources, and GUI
components.

5-6 Active Workspace Customization AW004 2.4

Chapter 5: Framework architecture

Framework architecture

• Each component can define what comprises its contract based on the component’s desired
capabilities.

The component contract has two levels of publication:

• Published to Public

• Published within Siemens PL DEV

Contracts tagged as published to Public for licensed customers and partners can be used by
customers, partners, and other PL developed components and internally within the component
publishing the contract. These contracts are the most mature and least likely to change and,
therefore, have the longest notice for deprecation.

Contracts tagged as published to Siemens PL DEV can be accessed by other components that are
developed by Siemens PL DEV and are not available for use by customers and partners. These are
either less mature contracts that are not ready to publish or are explicitly held back to manage
intellectual property or the cost of maintenance. These typically have a deprecation notice duration
that is shorter than the published contracts. However, there is always an agreed upon notice duration
that is well publicized and guaranteed to be honored so that other components can rely on it.

Contracts internal to the component that are not published must not be used by any other component,
including components built by Siemens PL DEV.

• This ensures that a component can evolve with internal implementation as long as it continues to
honor its external facing contracts. This characteristic is key to the evolution of the components
and maintains quality.

• This gives customizers the stability needed to continue to deploy newer versions of their
extensions and components.

Caution

Be sure to stop using deprecated contracts as they can be removed anytime after the
deprecation notice period expires.

An API in the Active Workspace client uses Java annotations to express its level of publication.
The annotation can be applied to a class or to a method in a class. When it is applied to a class,
all methods in the class honor the level of publication unless it is specifically overridden by a
method-level annotation.

Every API in a component's published package has annotation. Annotation specifies the maturity and
visibility of a given interface or class.

The following code shows an annotation definition:
@Target({ ElementType.METHOD, ElementType.TYPE })
public @interface ApiVisibility
{

MaturityEnum maturity();

Scope publishScope();

/**
* How mature or stable is the api
*/
public enum MaturityEnum
{

AW004 2.4 Active Workspace Customization 5-7

Framework architecture

Chapter 5: Framework architecture

Experimental, // as the name states; this can change without notice
Mature, // provides a guaranteed deprecation notice period before removal
Deprecated // is in the notice period for future removal

}

/**
* what is the intended visibility or access
*/
public enum Scope
{

Hidden,// only available within the component that defines this API
Internal,// only available to Siemens PL DEV
Public // Available to customers, 3rd parties etc.

}
}

An example of applying this annotation follows:
/**
* Interface for the End Point configuration information.
* This is used to hold configuration values for configured
* connection and authorization data.
*/
@ApiVisibility(maturity = MaturityEnum.Experimental, publishScope = Scope.Internal)
public interface IEndPointDefinition
{

Managing components
A component is the unit of management and development that goes through the software life cycle
and development process.

• Typically, each component is developed and enhanced in an independently managed process.
The component goes through its life cycle and is released when it achieves its goals, and as long
as its dependencies are satisfied.

• When a component is released, its version number should be incremented. Its published and
previously undeprecated contracts are guaranteed to function in the new version. The component
clearly articulates what contracts are deprecated and when they will be removed.

• A solution is an assembly of specific compatible versions of components that are released
together.

As components evolve, they manage their dependencies and move to newer versions of components
they depend on. A component version is incremented if it adds, removes, or deprecates a contract
such that form, fit, or function are changed.

• A published contract does not change, but it is deprecated and a new contract is published if
change is necessary.

• Only contracts that have been previously deprecated and the notice period has expired can be
removed. Using a new version of the dependency does not, by itself, cause a component to
increment its version.

5-8 Active Workspace Customization AW004 2.4

Chapter 5: Framework architecture

Chapter 6: View model and data binding

Model-View-Presenter (MVP)
Model-View-Presenter (MVP) sets up a pattern that provides good separation of concerns (SOC).
This allows building large scale user interface (UI) applications. The data binding framework used in
the Active Workspace client helps to bind the data in the model with the widgets in the view. This
reduces the amount of code application developers must write to implement use cases.

• The view provides the UI. The view does not have business logic.

• The model is the entity graph that the view represents.

• The presenter contains the business logic and coordinates the interaction between the view
and the model.

The diagram shows the interaction between the different elements of the MVP pattern.

• The presenter manages creating and updating the model and view.

• The view presents the UI and forwards user events, such as click events, to the presenter.

• The model forwards state-change events to the presenter to update the view.

Active Workspace client MVP elements
The Active Workspace client uses the GWT platform to provide the MVP framework.

AW004 2.4 Active Workspace Customization 6-1

Chapter 6: View model and data binding

The model typically consists of client data model objects, such as model objects and model types.

• Client data model objects consist of presenter specific data that are not model objects (JavaBean
style objects).

• The model is typically populated by making an SOA call or by client-side logic.

• If the model consists of model objects, the model has to listen for changes in the model objects
and update based on user actions.

The view consists of widgets for layout and content. Styling is derived from cascading style sheets
(CSS), and the content can be static and dynamic.

• Static elements, such as a titles, are defined in the view.

• Dynamic elements, such as objects and object properties, come from the model.

• The presenter initializes the dynamic content and keeps it up to date.

• The view communicates user events and value-change events to the presenter through a
UiHandlers interface.

The presenter is the controller that coordinates interaction between the model and view. It also
handles the life cycle of the UI. The business logic is present in the presenter.

Repetitive code patterns
The following code patterns are repeated in each presenter and view:

• Populate the model from the client data model.

• Create the view based on the model data.

• Listen for state changes in the model.

• Update the view based on model changes.

• Listen for value changes in the view.

• Update the model based on value changes.

These patterns provide a framework to encapsulate repetitive work and minimize work needed in
each presenter, view, and model for presenting the UI, and help make testing simpler.

Data binder

Data binding framework

The Active Workspace client data binding framework handles repetitive code patterns for these
interactions:

6-2 Active Workspace Customization AW004 2.4

Chapter 6: View model and data binding

View model and data binding

• Initialize the view from the model.

• Listen for state changes in the model.

• Update the view based on model changes.

• Listen for value changes in view.

• Update the model based on value changes.

To assist in testing, the business logic for UI interactions is moved from the presenter to the view
model. Test modules can instantiate the view model and perform the testing without having to
instantiate and mock up the presenter or view.

This pattern lets the presenter role focus on:

• Creating the model and view at the appropriate time in the UI life cycle.

• Providing the view and model to the data binder to bind when the UI is displayed.

• Unbinding the view and model when the UI is hidden.

• Forward user events from the view to the model.

AW004 2.4 Active Workspace Customization 6-3

View model and data binding

Chapter 6: View model and data binding

The view and presenter do not have to generate code for initializing or updating data in the view or
model. The data binder does this, and it enforces a contract on the view and view model to achieve
the data binding.

• The view model implements the IViewModel interface to provide the list of properties and object
collections. The data binder must listen for observable state changes in the view model.

• The view implements the IDataBoundWidgetContainer interface to provide the list of property
and object collection widgets that participate in data binding.

Properties in the view and view model

The widgets in the view that display properties on objects implement the IDataBoundWidget
interface.

These widgets render a specific property in the view model. They are bound to a property in the view
model by the bind value on the widget. The bind value is a string that identifies the property to render.

A corresponding property in the view model must implement the IViewModelProperty interface.

6-4 Active Workspace Customization AW004 2.4

Chapter 6: View model and data binding

View model and data binding

This property model object contains the data type, property name, property value and property
display name. It also contains state flags for the property such as required, editable, enabled, and
so forth, and it specifies the valid list of values for the property.

The data binder binding:

1. Asks the view for a list of data-bound widgets.

2. For each data-bound widget:

a. Gets the bind value.

b. Asks the view model for the property with that bind value.

c. Ensures the data type for the widget and for the ViewModel property are identical.

d. Becomes a listener for widget value changes.

e. Becomes a listener for view model property changes.

f. Initializes the widget with the view model property data.

Note

If the state changes in the view model property, the widget is updated with the values from
the view model property.

If the value changes in the widget, the new value is set in the view model property. Any
validation error returned by the view model property is passed on to the widget.

AW004 2.4 Active Workspace Customization 6-5

View model and data binding

Chapter 6: View model and data binding

Collections in view and view model

You may encounter use cases where the view must show properties from a list of objects in the
UI, such as in a table, a tree, or a list. The widgets that display list of objects must implement the
ICollectionBoundWidget interface.

The widgets are bound to a collection in the view model by the bind value on the widget. The bind
value is a string that identifies the collection to render.

A corresponding collection in the view model must implement the IViewModelCollection interface.

The collection uses the data provider to provide the list of objects that are part of the collection and
specifies:

• The properties on the list of objects rendered in the UI, such as columns in a table.

• The selection model to be followed by the view for this collection. This can be no selection,
single selection, or multiple selection.

The binding process for collection by the data binder is same as the property binding process.

View model
The client uses view model objects to represent the data model within the client.

Abstract view model

The framework provides an abstract view model implementation to handle model objects.

6-6 Active Workspace Customization AW004 2.4

Chapter 6: View model and data binding

View model and data binding

The abstract implementation, AbstractViewModel:

• Presents properties on the model object as view model properties.

• Allows presentation of the list of model objects as a view model collection.

• Adds itself as a listener for model object modified events to update the view model and to update
the view when model objects change in the client data model.

The framework provides the AbstractTcViewModel subabstract implementation to handle
Teamcenter-specific lists of values and naming patterns.

Concrete view model

All concrete view models that are displaying Teamcenter model objects must inherit from
AbstractTcViewModel to incorporate this behavior. When view models get model objects from the
server, using SOA or from the presenter, the view models add the model object to the view model
by using the setDefaultBindObject method on the parent class. The view model can then serve
properties on this model object to the view. For example, a widget has a bind value of object_name.

setDefaultBindObject(modelObject);

In some cases, properties from more than one model object can be presented in the view, such as
showing properties from a task and the parent process in the view. The concrete view model can add
the other objects that are going to be part of the UI using the setBindObject method. The concrete
view model must provide the scope and identifier for the model object, such as process, for the view

AW004 2.4 Active Workspace Customization 6-7

View model and data binding

Chapter 6: View model and data binding

to identify the object, such as a widget with a bind value of process::object_name. If scope is not
provided in the widget bind value, the property is sought in the default bind object.

setBindObject(“process”, processModelObject);

Note

The properties that must be presented in the view must be loaded from the server before the
object is added to the view model. The view model cannot load missing properties. This lets
the concrete view model and presenter leverage property policy mechanisms to bulk load the
properties from the server and reduces the number of interactions with the server.

The concrete view model can add a named list of objects that are rendered in collection widgets to
the view model using the setBindObjects method. Each collection is identified by a bind value that
must be provided as input to the setBindObjects method. The list of properties to be displayed on
the list of object must also be provided as input.

setBindObjects(“set1”, modelObjects, properties);

The widget that renders this collection specifies a bind value of set1.

In addition to model object support, the abstract view model provides generic object.

• The concrete view model can leverage these objects to add model data that is not represented by
model objects in the client.

• The GenericViewModelObject, GenericViewModelProperty, and
GenericViewModelCollection classes are provided for this purpose.

To add an object to the view model, the concrete view model must create an instance of
GenericViewModelObject, add instances of GenericViewModelProperty class to represent the
properties on the object, and then add the object to the view model using the setBindObject method.

View
The view consists of a list of widgets for rendering the layout and content. If are any widgets are
leveraging data binding, the view must implement the IDataBoundWidgetContainer interface and
provide the list of widgets to the data binder.

6-8 Active Workspace Customization AW004 2.4

Chapter 6: View model and data binding

View model and data binding

The Active Workspace client framework provides a set of data bound widgets as part of the
Teamcenter UI layer.

AW004 2.4 Active Workspace Customization 6-9

View model and data binding

Chapter 6: View model and data binding

These widgets are described in Using property widgets.

• These widgets inherit from DefaultPropertyWidget and provide support for Teamcenter
semantics for properties such as LOVs, naming patterns, required, and so on.

• They should be used wherever Teamcenter properties are rendered in the UI for consistency
in functionality and look and feel. Custom Property widgets can be created by inheriting from
DefaultPropertyWidget.

Note

Ensure that all Teamcenter semantics for properties are honored.

Collection widgets that are provided by the framework Teamcenter UI layer for presenting model
objects in a table or a list. The list widget leverages preferences defined on the server for determining
the properties to render in the list tile.

6-10 Active Workspace Customization AW004 2.4

Chapter 6: View model and data binding

View model and data binding

Value change events from the data bound widgets are handled by the data binder. Other events of
interest in the widgets in the view, such as button click and scroll end, for example, must be trapped
by the view and passed on the presenter by the UiHandlers interface.

Presenter
The presenter creates the view model and provides the view and view model to the data binder
for binding.

The data binder manages the data flow between the model and view.

m_dataBinder = IDataBindInjector.INSTANCE.getDataBinder();

m_dataBinder.bind(getView(), m_viewModel);

When the presenter is hidden, the data binder and view model do not have to listen to events for
synchronization. The data binder must be unbound when the presenter hidden.

if(m_dataBinder != null) { m_dataBinder.unbind(); m_dataBinder = null; }

AW004 2.4 Active Workspace Customization 6-11

View model and data binding

Chapter 6: View model and data binding

For user events that the view communicates to the presenter, the presenter must forward these
events to the view model. This ensures the business logic is in the view model, rather than in both the
view model and presenter. This lets you test the business logic by testing the interfaces on the view
model. The tests do not have to mock the presenter or view to do this testing.

6-12 Active Workspace Customization AW004 2.4

Chapter 6: View model and data binding

Chapter 7: Service-oriented archictecture (SOA)

SOA goals
The client makes service-oriented archictecture (SOA) service calls to the server.

Whether you want to use an existing SOA service or create a new one, SOA services for the Active
Workspace client framework must be suitable for your needs.

You must understand the approach taken to make Teamcenter SOA services available to a GWT
client and how those services are consumed, and you must understand the principles of the
client-server interaction model and related industry best practices.

The goals of SOA support in the Active Workspace client include:

• Allow a native GWT access to Teamcenter SOA services similar in style to GWT - RPC, such as
using an asynchronous access pattern and providing interfaces for each service with a factory
pattern to hide implementation specifics.

• Integrate into the current development environment and autobuilt from the same Business
Modeler IDE templates that build other SOA bindings.

• Hide, from application developers, the details of the marshaling and unmarshaling logic.

• Have a light foot print. Do not require a large download to make a few service calls. Only
download what is absolutely needed based on the current location’s needs. This is essential
when running on resource-constrained platforms such as a smart phone or tablet computer.

• Meet or exceed the performance of the traditional clients.

The Active Workspace client framework follows industry standard patterns in its client-server
interaction; each pair of request-and-response activities are entirely independent and unrelated to
prior or subsequent communication. The interfaces of SOA operations must be stateless and explicit.

An SOA operation is stand-alone with no reliance on prior or subsequent operations. The
individual request is serviced only by the server. There must be no factors outside the scope of the
request-response activity that dictate what the operation does. This lets you systematically ensure
that the client remains resilient to server reassignment such as when connection to a tcserver
process is lost.

For the Active Workspace client, you must ensure our operations remain stand-alone, and the client
is properly decoupled from the server. This prevents building in implied assumptions across SOA
calls or holding server state in the client that is tied to a given server's process.

Stand-alone operations are important for the following reasons:

• They simplify the relationship between client and server; the server fulfills a single request with a
response.

o State is cleanly managed.

AW004 2.4 Active Workspace Customization 7-1

Chapter 7: Service-oriented archictecture (SOA)

o No indefinite synchronization of state between client and server.

• They decouple the client from the server and separate tiers and encapsulation of responsibilities,
which improves stability and maintainability.

• The client is not indefinitely bound to a tcserver process.

o The administrator can manage the server pool without being concerned that clients are tied
indefinitely to a particular tcserver instance.

o If a server fails, the client can continue because any SOA call made by the client can be
serviced by a new tcserver instance.

• Users can return to the client after a period of inactivity and resume their work. There is no
reliance on a particular server remaining available.

• Users can copy-and-paste or email the browser URL at any time. After passing the necessary
security challenge, users can open the link to get to the same location.

• Operations that can be explicitly validated and tested. There is no additional complexity from
influence of various possible prior operations.

The framework of the client and server tiers is designed and enhanced to facilitate this approach
to client-server interaction. However, to ensure you use only explicit and stand-alone operations
requires that application code you develop for the Active Workspace client must follow the guidelines
for the design and selection of SOA operations.

Framework support for REST services
Teamcenter SOA services are document-style representational state transfer (REST)-based services.

• A client calls a service by posting a document with an HTTP request to a service end point and
the server responds back with a response document.

• Each service defines its input and output schemas using Business Modeler IDE templates.

Prior to development of the Active Workspace client framework, the supported payload was XML, and
the XML schema is compliant to the definitions in the Business Modeler IDE definitions. As part of the
introduction of the Active Workspace client framework, SOA supports a JavaScript Object Notation
(JSON) payload. In this case, the JSON payload is compliant with the same schema definitions
except the format is JSON compliant.

Programming model
Synchronous calls from a client to a SOA service is not recommended. Calls to the server from the
GUI thread results in the client interface becoming unresponsive for the duration of the call, giving the
impression the application is not functioning. Because the service call is typically made over a WAN,
latency is directly felt by the user in terms of unresponsiveness.

7-2 Active Workspace Customization AW004 2.4

Chapter 7: Service-oriented archictecture (SOA)

Service-oriented archictecture (SOA)

The Active Workspace client framework defines a programming model to make it impossible to use
this pattern. From a review of the GWT RPC style of services, the adopted model shares the benefits
of that approach by leveraging asynchronous patterns.

An autogenerated interface definition is provided for each Teamcenter SOA service. The interface
follows an asynchronous pattern.

public interface SessionService
{

public void login(com.teamcenter.services.gwt.core.published._2011_06
.Session.Credentials credentials,

final AsyncCallback<com.teamcenter.services.gwt.core.published._2011_06
.Session.LoginResponse> callback);

...
}

Note

Logon operation input parameters are the input types defined on the service in the Business
Modeler IDE. There is an additional last parameter that is the callback object (AsyncCallback)
The output of the service is void because it is an asynchronous service that has an immediate
return.

When this service is called, the application calling the service provides a callback object. The callback
object has two methods (onSuccess and onFailure), which are called based on the outcome of the
call to the server. The caller must implement these methods and process the return.

A factory is provided to get a service. An example access pattern is as follows:
SessionService service = SessionGinjector.INSTANCE.getSessionService();

service.login(userName, password, "", "", "en_US", "A-JSON-Client",
new AsyncCallback<LoginResponse>()

{

@Override
public void onFailure(Throwable caught)
{

//do your error processing here
logger.log(Level.WARNING, "Login Failed");
}

@Override
public void onSuccess(LoginResponse result)
{

// Do your work here
}

});

AsyncCallback implementation best practice
The programming model example shows an anonymous class implementing AsyncCallback being
passed to the logon request.

This works well where the onSuccess and onFailure methods do not require any state to be
available to finish processing the success response or the failure.

AW004 2.4 Active Workspace Customization 7-3

Service-oriented archictecture (SOA)

http://google-web-toolkit.googlecode.com/svn/javadoc/latest/com/google/gwt/user/client/rpc/AsyncCallback.html
http://google-web-toolkit.googlecode.com/svn/javadoc/latest/com/google/gwt/user/client/rpc/AsyncCallback.html#onSuccess(T)
http://google-web-toolkit.googlecode.com/svn/javadoc/latest/com/google/gwt/user/client/rpc/AsyncCallback.html#onFailure(java.lang.Throwable)

Chapter 7: Service-oriented archictecture (SOA)

In other cases, the onSuccess or onFailure methods require a state to continue processing the
request. To handle these use cases, the framework provides the following convenience classes that
applications can use:

public abstract class AsyncCallbackWithContext<Tstate, Tresult>
public abstract class AsyncCallbackWithContextPair<Tstate1, Tstate2, Tresult>

These abstract classes, located in the com.siemens.splm.clientfx.base.published package:

• Allow state to be passed as part of their construction.

• Override and finalize the onSuccess methods from the AsyncCallback class, and then delegate
to these statements:

public abstract void onSuccess(Tstate state, Tresult result);
public abstract void onSuccess(Tstate1 stateObj1, Tstate2 stateObj2, Tresult result);

• Pass in the state provided at construction time.

Code autogeneration and integration into the build system
The interfaces, input/output types, and the implementation and factories to return these
implementations are standard code that developers should not have to re-create. To achieve this, the
Active Workspace client framework:

• Provides a code generator to generate these interfaces and classes as part of the build system,
and packages this using modularity principles. The code generator is similar to the code
generators for the other SOA client bindings, such as C++, that many customizers already use.

• Uses the Business Modeler IDE template definitions for the services and produces the boilerplate
artifacts needed by the Active Workspace client and packages it up.

To generate GWT client bindings for an SOA service:

1. To add the SOA service operations, follow the instructions in the Working with services topic
in Business Modeler IDE.

2. Enable the GWT code generator & build your-service-name.autogen.jar in the Business
Modeler IDE.

3. Copy the resultant JAR file into the STAGE/src/your-service-name directory.

4. Create the following module.json file in this directory alongside your
your-service-name.autogen.jar file.

{
"type": ["soa"],
"gwtModules":[

"full-package-name-of-your-GWT-module"
]

}

5. From the command line, run the gwtcompile.cmd script to build your SOA module for use in
your Active Workspace customization.

7-4 Active Workspace Customization AW004 2.4

Chapter 7: Service-oriented archictecture (SOA)

Service-oriented archictecture (SOA)

Client data model
When data is returned from the server, it is deserialized into client objects using an autogenerated
binding.

The over-the-wire schema for Teamcenter SOA is a typeless schema. When data arrives, it is
essentially a collection of properties with no information about the types or related metadata. Client
data model and the meta system describes the interfaces provided, so these objects can be
consumed within the client model-view-presenter design pattern of the Active Workspace client.

Object property policy
The object property policy dictates the required properties for given object types. It determines the
properties that are returned in a SOA response by the server for a given service call.

For the Active Workspace client, this policy is constructed by the client framework, given the property
requirements of its application consumers. The policy is tailored to client needs as registered by
the presenters.

The policy is included in the SOA request document when a call is made to the server. In this way,
the property policy requirements are explicitly stated on the request, and there are no implied
stateful assumptions about the active property policy at the server or about which tcserver process
is handling the request. This explicit and stateless mechanism for specifying client property
requirements ensures the SOA request is standalone and is resilient to server reassignment.

This approach is in keeping with the goals to:

• Have the SOA contract to explicitly state in the SOA request the properties the caller requires for
the objects returned.

• Have the SOA response explicitly contain the properties set requested for the objects returned.

IObjectPropertyPolicyManager

For the client framework, an IObjectPropertyPolicyManager class is designed to centrally manage
the client's property requirements.

• The client IObjectPropertyPolicyManager class manages the client’s property requirements as
registered with it by the application.

• It uses an OR operator to collect the requirements of the client views and presenters, such as the
requirement for a tree view with specific columns.

• To prevent ripple to client application callers, the IObjectPropertyPolicyManager class is in the
client framework layer. It can be queried by the IOperationManager class when an SOA request
is to be sent to insert or inject the property policy in the request

The effective aggregated needs of the application, as provided by the IObjectPropertyPolicyManager
class, are used to construct the SOA request by the client framework.

Property requirements registered by the application

The application presenters must register, update, and unregister their object property policy
requirements with the IObjectPropertyPolicyManager class as needed. This lets the

AW004 2.4 Active Workspace Customization 7-5

Service-oriented archictecture (SOA)

Chapter 7: Service-oriented archictecture (SOA)

IObjectPropertyPolicyManager class track the needs of the application and maintain the effective
policy. The effective policy is used when constructing the SOA request to explicitly specify the client's
property policy requirements for an SOA operation.

As the requirements of the client change, such as when a new column is added to a table for
a given presenter or when a new presenter is created, the effective policy is managed by the
IObjectPropertyPolicyManager class.

Consider the life cycle from the application's perspective.

1. Presenter1 uses IObjectPropertyPolicyManager to register checked_out and object_name
properties on the workspace object (WSO).

2. Presenter2 registers object_name and owning_user on the WSO with
IObjectPropertyPolicyManager.

• The effective object policy in IObjectPropertyPolicyManager now has checked_out,
object_name and owning_user properties on the WSO.

• The object_name property has a registeredCount of 2 because it is registered by both
Presenter1 and Presenter2.

3. Presenter1 creates an operation and initiates an SOA call.

• The client framework queries the effective object property policy from the
IObjectPropertyPolicyManager class and explicitly sets it in the request envelope.

• The SOA response returned to the client includes the WSO checked_out, object_name and
owning_user properties.

7-6 Active Workspace Customization AW004 2.4

Chapter 7: Service-oriented archictecture (SOA)

Service-oriented archictecture (SOA)

4. Presenter1 adds the creation_date property to the object property policy it registered.

The effective object policy in IObjectPropertyPolicyManager now has checked_out,
object_name, owning_user, and creation_date properties on the WSO.

5. Presenter2 removes the owning_user property from the object property policy it registered.

The effective object policy in IObjectPropertyPolicyManager now has checked_out,
object_name, and creation_date properties on the WSO.

6. Presenter1 is closed.

It unregisters the object property policy.

The effective object policy in IObjectPropertyPolicyManager now has object_name and
creation_date properties on the WSO. The object_name is still there because it was also
registered by Presenter2.

AW004 2.4 Active Workspace Customization 7-7

Service-oriented archictecture (SOA)

Chapter 7: Service-oriented archictecture (SOA)

As the needs of the client change, such as when a new column is added to a table for a given
presenter or when a new presenter is created, the effective policy is maintained and managed by the
IObjectPropertyPolicyManager class.

The IObjectPropertyPolicyManager class provides addToObjectPropertyPolicy APIs for your
registered policy.

Explicit object property policy

For the client framework, the effective object property policy maintained by the
IObjectPropertyPolicyManager class is an explicit property policy that is included in the SOA
request document. The JSON text sent to the server logically has two parts: the request body and
the explicit property policy.

When handling an SOA call, the tcserver gateway has preexisting capabilities to push and pop the
client state before and after the service call is invoked.

As part of the pushing of the client context, the explicit property policy is used to construct a dynamic
property policy that is applied by the policy manager for the duration of the server call. When the
service response is constructed, as part of popping the client context, the dynamic property policy
is unregistered with the policy manager.

SOA checklist
You must ensure operations remain stand-alone, and the client is properly decoupled from the server.

• This prevents building in implied assumptions across SOA calls and prevents holding a server
state in the client that is tied to a particular server process.

• This approach also systematically ensures the client remains resilient to server reassignment,
such as when connection to a tcserver process is lost. The client must not depend on which
server services a request.

To use an existing SOA operation or create a new SOA, you must consider the following statements.

The SOA operation must not:

• Rely on any prior or subsequent operation.

• Rely on being serviced by a particular tcserver instance.

• Rely on any objects in a given tcserver instance being present or loaded.

7-8 Active Workspace Customization AW004 2.4

Chapter 7: Service-oriented archictecture (SOA)

Service-oriented archictecture (SOA)

• Load an object or state in the tcserver instance with the expectation that it is needed by a
subsequent operation.

• Contain any run-time business objects, pointers, tags, or data that is specific to a particular
tcserver process.

• Return run-time business objects, pointers, tags, or data to the client that are specific to a
particular tcserver process. An exeption is allowed if a run-time business object is used as a
container for providing properties back to the client, and that object is never used in a subsequent
SOA request.

• Implicitly reference addition data, such as service data, that is not directly related to the request
and response document.

• Encourage or result in patterns of client-server chattiness.

• Be overly specialized, resulting in highly restricted usefulness.

• Expose objects to the client unnecessarily. For example, low-level server subobjects that relate
to the persistence scheme must not be exposed to the client.

The SOA operation must:

• Be entirely stand-alone. There is no state or implied state across calls.

• Only perform operations explicitly specified in the SOA request. Implicit factors do not exist.

• Only exchange data that is explicitly stated in the request and response document.

• Use the standard patterns for error handling, partial errors, normalization, and closure.

• Be coarse-grained and can act on sets of inputs and outputs.

• Be consistent with patterns employed for other SOA operations.

• Be suitable for any client or consumer. The interface is client independent.

• Have an interface that is clearly decoupled from its underlying implementation. The interface
does not leak implementation specifics.

• Have a clear contract and purpose and be logically encapsulated.

• Have simple and well-defined interfaces to minimize misinterpretation.

• Exploit entity abstraction to share logical concepts across services.

AW004 2.4 Active Workspace Customization 7-9

Service-oriented archictecture (SOA)

Chapter 8: Client data model and the meta system

Client data model
A Model-View-Presenter (MVP) design pattern is implemented for the Active Workspace client
framework. The model data that the view model consumes are client objects. These client objects
are ModelObject objects as defined by the Teamcenter SOA schema. In other words, they are client
representations of business objects that form the basis of the client data model.

The client data model has a related meta definition.

When data is returned from the server in a service response, it is deserialized into client objects using
an autogenerated service binding. The schema for Teamcenter SOA is a typeless schema, so data
arrives at the client as a collection of properties with no information about the types. The meta system
is provided so meta information can let the system make sense of the data returned by the server.

The client data ModelObject object has a corresponding ModelType object that provides its meta
definition. Property meta definition data is provided by a PropertyDescriptor object. In this diagram,
model data objects are on the left; meta definition objects are on the right.

When data is serialized at the server, the ModelType and PropertyDescriptor objects are not sent
back on that response. This is because there is one instance of the ModelType object, the metadata,
and many instances of the ModelObject object. Serializing the meta information on every call
for every object is inefficient. Instead, the client fetches the meta information separately using a
dedicated SOA service. This provides the client framework with the flexibility to manage the meta
system within the resource constraints of the target runtime environment.

Programmer-friendly interfaces
The mechanics of the relationship between the model and its associated meta definition is managed
by the framework.

A ModelObject object has properties, and all properties in the typeless schema are of type string.

• If this schema were to be exposed directly to the application programmer, the programmer
would have to manage the lookup of the PropertyDescriptor meta definition to determine the
type of that property, and then parse the string into the required type before the data is used.

AW004 2.4 Active Workspace Customization 8-1

Chapter 8: Client data model and the meta system

This results in duplicate boilerplate code, which adds little value and increases the complexity of
using the framework.

• Instead, the framework client data model provides a convenient API for accessing the
ModelObject properties and the type and property descriptors.

Note

The authoritative source for interface definition is the Javadoc for the release of the Active
Workspace client you are using.

The property getValue methods use Java Generics to provide type safety as you access the values.
For convenience, the interface also provides getTypeDesctiption and getPropertyDescription
methods for access to meta information.

Caching
ModelObject objects have related ModelType objects. Because the ModelType objects are meta
descriptors, they do not change often for a given Teamcenter deployment and are not expected
to change within the same session. Therefore, these objects can be cached for the duration of a
session. Such caching reduces the number of calls to the server and improves client performance.

Running in a browser environment brings challenges when caching. Browsers do not allow access
to the disk for security reasons. HTML5 supports client-side caching by using the HTML storage
API, a key-value database. However, there are limits on how much data can be stored and also
differences between browser implementations. In the future, the framework may support some level
of storage-backed caching. The Active Workspace client framework provides a simple in-memory
cache for meta objects. This cache is used by the SOA response handler to find meta objects as
needed and to store meta objects in the in-session cache once they are downloaded. The framework
ensures a minimum number of calls are made as this data is incrementally cached.

ModelObject objects can also be cached, but these are user-authored objects that can change at
any time. The framework currently has a simple in-memory ModelObject cache. The goal is to
maintain the object while it is needed and to use the object from the cache when it is there. This ability
can be used, for example, to follow reference properties in the client, but you do not want to rely on
objects being in the cache. Most of these optimizations are invisible to the application programmer
and are hidden behind the client data model APIs.

The life cycle of a ModelObject object in the client data model is currently managed by the
Teamcenter SOA framework, which informs the client framework about changes to objects in SOA
responses. It provides a list of the objects that have been modified or deleted by that explicit SOA
operation and the properties that were modified. This information is used to update the objects that
are cached during the session. The framework SOA handler manages this information and maintains
the cache up-to-date.

Events
Objects can be modified in a session either by the user in the client session or by a server notification
of changes on an SOA response. In both cases, any client code using the ModelObject object
must be made aware of updates to the objects. The Active Workspace client framework provides

8-2 Active Workspace Customization AW004 2.4

Chapter 8: Client data model and the meta system

Client data model and the meta system

an event mechanism to publish, update, and delete events. Handlers can be registered for these
events. For example, in an MVP model, these events are used to update the view with the updated
object information.

The following code shows how the application can register for event notifications:
public class ModifiedObjectHandler

implements ModelObjectModifiedEvent.Handler
{

/**
* Handler Registration for modified object event
*/
private HandlerRegistration m_handlerRegistration = null;

public ModifiedObjectHandler()
{
m_handlerRegistration = ModelObjectModifiedEvent.register(

IEventInjector.INSTANCE.getEventBus(), this);
}

@Override
public void onObjectsModified(ModelObjectModifiedEvent e)
{
// Handle modified object events here }

}

AW004 2.4 Active Workspace Customization 8-3

Client data model and the meta system

Chapter 9: Active Workspace hosting

Active Workspace hosting allows the Active Workspace client experience to be brought into another
application.

Examples of Active Workspace hosting can be seen in existing software like NX, Lifecycle
Visualization, and the Teamcenter rich client. This functionality can be added to other software
platforms as well; the interop libraries allow you to host Active Workspace functionality by utilizing
Java, C++, C# (.NET), or JavaScript bindings.

Further information about hosting an Active Workspace session within an application can be found in
the Active Workspace hosting programmer's guide, which is available on the GTAC website.

AW004 2.4 Active Workspace Customization 9-1

Chapter 10: FTSIndexer customization

Overview of indexer customization
TcFTSIndexer is a Java application that can execute types, flows, and steps.

TcFTSIndexer:

• Is an SOA client that connects to Teamcenter to extract data and index the data into Solr.

• Allows modification of any existing steps and flows to meet customer requirements.

• Can be customized to extract external system data and index into Solr.

• Provides utilities that can be used in step customization.

Details of these utilities are in Javadocs available in the TC_ROOT\TcFTSIndexer\docs\javadocs
directory.

Indexer customization prerequisites
• A working TcFTSIndexer Installation in stand-alone mode.

• A high-level understanding of TcFTSIndexer architecture.

• An understanding of input and output objects associated with each step in a flow that is being
customized.

• An understanding of properties associated with the flow.

• Review sample code for steps in the TC_ROOT\TcFTSIndexer\sample directory.

• Refer to Javadocs for published methods and classes discussed.

• Refer to the TC_ROOT\TcFTSIndexer\sample\TcFtsIndexer_sample1.properties files and
the TC_ROOT\TcFTSIndexer\conf\TcFtsIndexer_objdata.properties files for example
configurations.

• For the new requirements, create a high-level design of the functionality and:

o Create a list of steps with their input and output objects defined. Check if there are existing
steps that can be reused.

o Chain these steps to create a new flow or modify an existing flow.

o Determine if the flow is part of an existing type or a new type.

AW004 2.4 Active Workspace Customization 10-1

Chapter 10: FTSIndexer customization

Further information
Further information about TcFTSIndexer extensibility can be found in Active Workspace Deployment.

10-2 Active Workspace Customization AW004 2.4

Chapter 10: FTSIndexer customization

Part II: Customization examples

AW004 2.4 Active Workspace Customization

Chapter 11: Simple examples

Simple example overview
These simple customizations require no third-party software. They are performed using the rich client.

Configuring the home page

Overview of the home page configuration

The Active Workspace home page is preconfigured to include tiles for the most commonly used
features of the client. By default, all users, groups, and roles use the same home page. You can,
however, create new configurations for specific groups, roles, and projects. The home page displays
the same content regardless of the device used.

When a user logs on to Active Workspace, the home page is based on a combination of the Site,
Group, Role, Project, and User collections. Any tile collections matching the user’s current context
are combined.

The following objects are used to persist the configuration:

• Tile

Stores tile instances.

• Tile Template

Stores the tile definition.

• Tile Collection

AW004 2.4 Active Workspace Customization 11-1

Chapter 11: Simple examples

Collects tiles together for a given scope (Group/Role/User/Project).

• Tile Relation

Specifies the relation type that attaches tiles to collections.

Reset the home page

If a user unpins tiles from the home page, you can reset the home page to the default for the user’s
group and role. When you use this technique, the user loses all personal home page customizations.

1. Log on to the rich client.

2. Search for the Tile Collection object owned by the user.

3. Select the tile collection (for example, user-name - TileCollection).

4. Delete the collection.

The next time the user logs on to Active Workspace, the tile collection is created for the user
based on group and role.

11-2 Active Workspace Customization AW004 2.4

Chapter 11: Simple examples

Simple examples

Selecting a user’s tile collection

If instead you want to repin a tile to the user’s home page, perform the following steps:

1. Search for the user’s tile collection.

2. Select the unpinned tile (for example, Favorites).

AW004 2.4 Active Workspace Customization 11-3

Simple examples

Chapter 11: Simple examples

Selecting a tile in a user’s tile collection

3. On the menu bar, choose Edit→Properties on Relation.

4. In the Hidden property, select False and click OK.

The next time the user logs on to Active Workspace, the tile reappears on the home page.

11-4 Active Workspace Customization AW004 2.4

Chapter 11: Simple examples

Simple examples

Repin a tile

Protect a tile

If you do not want users to be able to unpin a tile from their home page, you can protect it. A protected
tile can be moved, resized, or reorganized into a new group, but it cannot be removed from the user's
home page. The unpin button is not available for a protected tile.

1. Log on to the rich client.

2. Search for the Tile Collection object owned by the user.

3. Expand the tile collection (for example, username - TileCollection).

AW004 2.4 Active Workspace Customization 11-5

Simple examples

Chapter 11: Simple examples

Expanding a user’s tile collection

4. Select the tile that you want to protect (for example, Favorites).

5. On the menu bar, choose Edit→Properties on Relation.

6. In the Protected property, select True and click OK.

The next time the user logs on to Active Workspace, the tile is protected.

11-6 Active Workspace Customization AW004 2.4

Chapter 11: Simple examples

Simple examples

Protect a tile

Hide a tile

To hide a tile, you create a collection specific to a group, for example, and then hide the tile in that
collection. This allows you to suppress something from the site collection for a specific group.

1. Create a collection for the group for which you want to suppress the tile.

2. In the Teamcenter rich client or thin client, search for the tile and choose Edit→Copy. Then,
choose Edit→Paste Special.

3. Copy the tile you want to suppress and paste it into the newly created collection.

4. In the relations properties dialog box, select True for the Hidden property.

5. Click Finish.

Note

To unhide the tile, open the tile collection object, right-click the hidden tile in the collection, and
choose Properties on relation. On the Hidden property, select False.

AW004 2.4 Active Workspace Customization 11-7

Simple examples

Chapter 11: Simple examples

Create a new collection

You can create a collection specific to a group or role. You can then add tiles to the collection so that
only users in the specified group or role see the tiles.

1. In the Teamcenter rich client, copy the object for the scope for your collection.

To use a group or role, perform an Admin – Group/Role Membership search, select View
Properties, and then click Copy to copy the group or role.

To use a project, perform a Project search, select the project in the Search Results panel,
and press Ctrl-C to copy it.

2. Choose File→New→Other and select Tile Collection.

3. In the dialog box that appears, specify the following:

• Name

Type a recognizable name for your new collection, for example,
Engineering-Group-TileCollection.

• Scope

Paste the object that you copied in step 1.

4. Click Finish.

Add a tile to a collection

1. In the Teamcenter rich client or thin client, perform a General search with Type=Tile to search for
the tile, and then choose Edit→Copy.

2. Copy the tile to the clipboard.

3. Paste the tile onto the desired collection.

Choose Edit→Paste Special.

4. In the relation properties dialog box, specify the following:

• Order Number

Enter the position of the tile within its group. The lowest number in a group indicates the
position of the group relative to other groups.

• Tile Size

Select the size for the tile.

Option Size
small 1x1
wide 2x1
large 2x2

11-8 Active Workspace Customization AW004 2.4

Chapter 11: Simple examples

Simple examples

• Tile Group

Specify the group in which the tile should be included. You can choose from the predefined
group names or type in a new name.

5. Click Finish.

Create a new tile type

1. In the Teamcenter rich client or thin client, create a new tile template.

Choose File→New→Other, and then select Tile Template.

• Name — This value is required.
• Specify the icon to display on the tile using one of two properties.

Icon Enter a value which specifies the base name of the icon.

Icon Source Paste a link to an object that contains the icon.

• Theme Index — This value determines tile color style.

AW004 2.4 Active Workspace Customization 11-9

Simple examples

Chapter 11: Simple examples

• Tile Supported Sizes — This can be used to limit the available sizes for a tile type — if
blank, all sizes are allowed.

• Action — This is run when the tile is clicked.
• Action Type — This is the type of action used.
• Content Names— This contains the display names if the tile has live data.
• Template ID — This is a unique name for the template. Use your solution prefix (awp0 in

this example).

2. Copy the new template to the clipboard.

3. Create a new tile object.

Choose File→New→Other, and then select Tile.

• Name — This value is required.
• Specify the tile template to use.

Tile Template ID This is the ID string of the template (used by automated create, ignore
when manually creating).

Tile Template Paste the tile template reference here (there should be one on your
clipboard from a previous action).

• Action Parameters— Place arguments here to append to the template action.
• Tile ID— This is a unique name for the tile. Use your solution prefix (awp0 in this example).
• Pinned Object— This is a reference to the Teamcenter object to which this tile refers (used

for pinned objects).
• Display Name — This the name of the tile as shown in the gateway.

11-10 Active Workspace Customization AW004 2.4

Chapter 11: Simple examples

Simple examples

Note

The new tile type is now created, but it is not displayed until it is included in a tile collection.
You can create a new collection or contribute to an existing one.

Create a tile template that creates a Part

Normally, after logging on, if a user wishes to create a new Document, Part, or Design, for example, a
user must click their Home tile, and then click the Create command, and then choose which type
object they wish to create. If this is a common occurence, creating a new tile designed specifically for
this functionality will save the user time.

Although you could create a new tile template by using the URL generated when you navigate to
the create panel, this URL is static, and will not update as needed if there are changes in the Active
Workspace server URL, for example.

In this example, you will create from a provided template a tile that presents the user with the Part
creation dialog box with a single click, and is robust enough to be valid even if the Active Workspace
server changes. This template is called Awp0HomeFolderCreateTemplate.

1. Use the rich client to create a new tile, but use the provided Awp0HomeFolderCreateTemplate
tile template instead of creating your own.

2. Fill in the fields as normal, but for the Action Parameters field with the name of the type you
wish to create.

cmdArg=Part

3. Paste the new tile into a tile collection.

AW004 2.4 Active Workspace Customization 11-11

Simple examples

Chapter 11: Simple examples

Note

If you wish to provide a short list of types, you can modify the command argument with
additional types, separated by semi-colons.

cmdArg=Part;Document;Design

11-12 Active Workspace Customization AW004 2.4

Chapter 11: Simple examples

Simple examples

Action styles

Action style Value On click
Default 0 Go to provided history token.
External link 1 Open the provided URL in a new window or tab.
Static resource 2 Open the provided static resource from the WAR file. Resource

link is relative to the host HTML file.
Command 3 Run the command with the provided ID.

Note

In all but the default style, the history token is used to provide the name or Location of the
URL, resource, or command.

Theme index

If you choose The theme uses the
0 Light tile color.
1 Medium tile color.
2 Highlight tile color.
3 Alternate tile color.

Note

The alternate theme index is not used by any of the provided themes.

Tile sizes

If you choose By entering The tile is
small 0 1 x 1
tall 1 1 x 2
wide 2 2 x 1
large 3 2 x 2

AW004 2.4 Active Workspace Customization 11-13

Simple examples

Chapter 11: Simple examples

Provided icons

Dark and light versions of each icon is automatically retrieved as needed. The base name + _dark
or _light is retrieved.

announcement idea

change inbox

changes issue

document issuepr

favories mail

favoritesfolder part

feedback pdf

folder people

help power

home requirement

homefolder search

Note

The _dark version of each icon is shown.

11-14 Active Workspace Customization AW004 2.4

Chapter 11: Simple examples

Simple examples

Configuring page layout using style sheets

Introduction to using XML rendering templates (XRT) with Active Workspace

XRT files use the XML format. They are used to configure layout in Teamcenter clients, including
Active Workspace, the thin client, and the rich client, based on object type, user group, and role. XRT
files are also commonly referred to as style sheets. However, they do not follow either CSS or XSL
standards, nor are they intended to perform any transformations.

In Active Workspace, they control areas such as the secondary work area and the tools and
information panel.

You edit XRT files in the rich client. You can locate Active Workspace style sheet preferences in the
rich client by choosing Edit→Options→Search and looking for preferences whose names follow
this format:

AWC_<type-name>.*RENDERING

The value of the preference points to a style sheet dataset name.

Searching for Active Workspace style sheet preferences in the rich client

To edit a style sheet, look up the preference value and then query for the corresponding dataset. You
can locate the style sheet files in the rich client by searching for XMLRenderingStylesheet files.

AW004 2.4 Active Workspace Customization 11-15

Simple examples

Chapter 11: Simple examples

Searching for style sheet files in the rich client

Tip

For complete instructions about how to work with style sheets, see the topics on using style
sheets in Client Customization found in the Teamcenter help collection.

Considerations for using XRTs in Active Workspace

Although Active Workspace uses XRTs like the other clients do, there are some differences:

• Active Workspace XRT rendering preferences have AWC_ added to the beginning of the
preference name, allowing for the assignment of style sheets that are unique to Active Workspace.

• Layout of Active Workspace XRTs in landscape mode is wide compared to the rich client and thin
client and, therefore, requires multiple columns.

• Do not alter the out-of-the-box XRT files for Active Workspace. If you do, the next
time you upgrade Active Workspace, the out-of-the-box files are replaced and you lose
your changes. Instead, create XRT files with unique names and assign them using the
AWC_<type-name>.*RENDERING preferences.

• Active Workspace can share XRT files with the rich client for the Summary tab. The default
summary XRT preference for Active Workspace is AWC_ItemRevision.SUMMARYRENDERING.
If you remove this preference, Active Workspace uses the default summary XRT preference used
by the rich client and thin client: ItemRevision.SUMMARYRENDERING.

• If you do not want to use the header on the overview page, you can remove it from the XRT files
used by the AWC_<type-name>.SUMMARYRENDERING preferences.

• Active Workspace supports:

11-16 Active Workspace Customization AW004 2.4

Chapter 11: Simple examples

Simple examples

o Multiple pages with visibleWhen tags
o Columns
o Sections
o objectSet tables (using tile/list or table modes). Lists in the rich client appear as tiles in

Active Workspace.
o Labels
o Breaks
o Separators

• The following are not currently supported in Active Workspace:

o Custom rendering hints
o conditions tag
o GoverningProperty tag

Configure the information panel using XRTs

The Active Workspace information panel displays details about the opened object and is accessed by
clicking the button.

Information panel

You use XRT datasets to configure the layout of the information panel. By default, there is an XRT
dataset forWorkspaceObject and ItemRevision object types. To modify the information displayed in
the information panel for other types, you must create an XMLRenderingStylesheet dataset, attach
an XML file to it, and then create a preference to point to the dataset. The XRT is registered using the
AWC_<type-name>.INFORENDERING preference.

1. Create a dataset of type XMLRenderingStylesheet.

Tip

You can copy an existing XRT dataset and rename it rather than create a new one. Find
existing XRT datasets in the rich client by searching for XMLRenderingStylesheet
dataset types. Then copy an existing XRT dataset by selecting it and choosing File→Save
As. Make sure you change the named reference file attached to the dataset to point to
a unique file name.

2. Attach the XML file to the new dataset as a named reference.

Siemens PLM Software recommends that your XRT be set up to display content in the information
panel as follows:

• Limit to one or two pages

• Limit to one column per page

• Use list displays for object sets

Keep in mind the following:

• Keep it simple. Do not make the layout the same as the summary or overview pages.

AW004 2.4 Active Workspace Customization 11-17

Simple examples

Chapter 11: Simple examples

• Active Workspace supports multiple pages with the visibleWhen tag, sections, and
objectSet tables (use the tile/list mode to fit the narrow display).

• The XRT used in the user interface is based on the selected object’s hierarchy. For
example, if you select an Item object type, but it does not have an XRT associated with it,
the XRT for AWC_WorkspaceObject.INFORENDERING is used because an Item is also a
WorkspaceObject.

3. Use the rich client to create a preference using the following parameters:

• Name: AWC_<type-name>.INFORENDERING, for example,
AWC_WorkspaceObject.INFORENDERING.

• Value: Name of the dataset created in step 1.

• Scope: Site preference.

Active Workspace-specific style sheets

If you want to have different style sheets in Active Workspace than you have in other Teamcenter
clients, you can create AWC_ preferences in the rich client to tell Active Workspace which style sheet
to use. This has no effect on the other clients or on any customer-created style sheets.

1. Create a dataset with a type of XMLRenderingStylesheet.

2. Attach the XRT style sheet to the new dataset as a named reference.

3. Use a text editor to edit the style sheet as necessary.

4. Create a preference in the rich client using the following parameters:

• Name:

AWC_<type-name>.SUMMARYRENDERING

AWC_<type-name>.CREATERENDERING

AWC_<type-name>.INFORENDERING

For example:

AWC_WorkspaceObject.INFORENDERING

• Value: Name of the dataset created in step 1.

• Scope: Site preference.

When rendering style sheets, Active Workspace first searches for
AWC_<type_name>.[SUMMARYRENDERING, CREATERENDERING, ...]. If no match is found, it
searches for <type-name>.[SUMMARYRENDERING, CREATERENDERING, ...]. If it still does not
find a match, it continues with the standard lookup mechanism for style sheets.

It is possible to register style sheets to a specific location, sublocation, or object type in Active
Workspace.

Use the following format to create the registration preferences:

11-18 Active Workspace Customization AW004 2.4

Chapter 11: Simple examples

Simple examples

type.location.sublocation.SUMMARYRENDERING

• type specifies the type of object. PartReviison or DesignRevision, for example.

• location specifies the location in the UI. For example, if the context is
com.siemens.splm.clientfx.tcui.xrt.showObjectLocation, then the location is
showObjectLocation.

• sublocation specifies the sublocation in the UI. for example, if the context is
com.siemens.splm.client.occmgmt:OccurrenceManagementSubLocation then the sublocation is
OccurrenceManagementSubLocation.

As with normal registration preferences, the value of this preference is the name of the dataset. When
rendering a page, the system will search for the most specific case to the most general.

•
type.location.sublocation.SUMMARYRENDERING

•
type.location.SUMMARYRENDERING

•
type.SUMMARYRENDERING

If none of the above preferences are found for the object, the immediate parent type will be searched
in the same manner. This process continues until a match is found.

Modular style sheets

It is possible to use the <inject> tag to refer to another XMLRenderingStylehseet dataset that
contains a block of XML rendering tags. This XML rendering style sheet would be incomplete on
its own, normally containing only a single page or section, but they allow a modular approach to
style sheet design and maintenance.

In the example below, a second XMLRenderingStylehseet dataset exists with the name
myXRTblock.

There are two methods of specifying which dataset is to be used.

• Directly, by referring to the name of the XMLRenderingStylehseet dataset.
<inject type="dataset" src="myXRTblock"/>

• Indirectly, by referring to a preference which contains the name of the dataset.

<inject type="preference" src="additional_page_contributions"/>

Then create the additional_page_contributionspreference, containing the value myXRTblock.

If the preference contains multiple values, then each dataset will be located and injected in order.

AW004 2.4 Active Workspace Customization 11-19

Simple examples

Chapter 11: Simple examples

Note

As well formed XML files must have a root node in order to be well-formed, the XRT you inject
must be wrapped in a <subRendering> element.

<subRendering>
<label text="This text will get injected."/>

</subrendering>

Someone leveraging injection must think about the resulting XML file, so that the resulting XRT
will be correct. The injection mechanism does not make any assumptions about where it is
injecting data.

Working with HTML panels in XRT

HTML panel in Active Workspace XML rendering datasets

The <htmlPanel> tag supports URL and HTML content to be included in an XML rendering.

• <htmlPanel> can be specified as a child tag in <page>, <column>, and <section> tags.

Note

The <htmlPanel> tag is supported only in Active Workspace XML renderings.

• The URL and HTML content can have the value of properties of the currently selected object
introduced into them. This technique is known as data binding.

Instead of embedding HTML directly into an XRT, it is possible to use the <inject> tag to refer to an
HTML dataset instead. There are two methods of specifying which HTML dataset is to be used. The
HTML dataset must contain only valid HTML code, with no XML style sheet tags.

In the example below, an HTML dataset exists with the name myHTMLblock.

There are two methods of specifying which dataset is to be used.

• Directly, by referring to the name of the HTML dataset.
<inject type="dataset" src="myHTMLblock"/>

• Indirectly, by referring to a preference which contains the name of the dataset.
<inject type="preference" src="additional_page_contributions"/>

Then create the additional_page_contributionspreference, containing the value
myHTMLblock.

If the preference contains multiple values, then each dataset will be located and injected in order.

Caution

Uncontrolled JavaScript code included in the HTML panels can be used to exploit a security
issue or other network policy violation. System administrators must exercise care to ensure
the XML rendering preferences, datasets, and any WAR build changes are monitored and
require DBA level access.

11-20 Active Workspace Customization AW004 2.4

Chapter 11: Simple examples

Simple examples

Specifying a URL

The src attribute is used to specify the fully qualified URL as the source of the content to display
in a new iframe.

• The src attribute can be complete or can contain references to various properties in the currently
selected object.

• You can specify multiple properties.

Example: simple static URL

To display the contents of the given URL within the iframe:
<htmlPanel src=”https://www.mycorp.com/info”/>

Example: include a property value in a URL

To display the contents of the given URL with the current value of the item_id property used as the
ID in the URL query:

<htmlPanel src=”https://www.mycorp.com/info?id={{selected.properties[‘item_id’]}}”/>

If the item_id property for the selected object is Part 1234, the final <iframe> tag is encoded as:
<iframe src=”https://www.mycorp.com/info?id=Part%201234”/>

Note

The resulting URL is made safe—all characters are encoded to assure they are valid for a URL.

For example, any space characters in the property value for the object are encoded as %20 in
the final URL.

Specifying HTML content

Any CDATA section included within the <htmlPanel> tag is used to set the inner HTML of the panel
in the rendering. This means that HTML tags in the CDATA section are placed in the panel verbatim.

Any occurrences of properties within double curly brackets ({{……}}) are replaced with the values for
those properties in the currently selected object.

Example: simple CDATA section

In this example, the current object_string value is placed in a level two header (<H2>) and the
specified item_id value is used to complete the sentence that begins with The ID is:

<htmlPanel>
<![CDATA[

<div>
<H2>{{selected.properties['object_string'].uiValue}}</H2>

</div>
<div>

The ID is {{selected.properties['item_id'].uiValue}}
</div>

]]>
</htmlPanel>

AW004 2.4 Active Workspace Customization 11-21

Simple examples

Chapter 11: Simple examples

Data binding

Data binding is a way to connect the current property values of an object model to attributes and
text in an HTML content view.

• This binding mechanism follows the conventions of AngularJS (by Google).

• A section of HTML to be replaced with some other value is enclosed in double curly brackets,
{{xxxx}}, with xxxx indicating a reference to a property in the current scope object.

For more information, see https://docs.angularjs.org/guide/databinding.

Specialized HTML tags

In addition to standard HTML tags such as , for bold text, and
 (to force a line break), XML
rendering can use new specialized tags to simplify the work to display and edit Teamcenter data. This
new tag reduces the amount of HTML required to accomplish common tasks.

Note

This new tag is implemented as an AngularJS directive. For more information about AngularJS
directives, see https://docs.angularjs.org/guide/directive.

<aw-property>

The <aw-property> custom tag is used to simplify label and value display for Teamcenter properties.
It also handles the editing of these properties when appropriate.

You can use the <aw-property> tag to display all supported Teamcenter property types including
single and multiple values, images, object sets, and object references.

The <aw-property> tag supports these attributes:

• prop

For labels and values, this required string attribute specifies the property to display. This attribute
supports data binding value substitution.

• hint

This optional string attribute specifies variations in the way a property is displayed.

The valid values are:

o label

o objectlink

• modifiable

This optional Boolean attribute specifies whether the property can be modified during edit
operations. It applies only when the property is otherwise editable.

<aw-frame>

The <aw-frame> custom tag is used to simplify displaying URL contents in an iframe. It supports
a single src attribute.

11-22 Active Workspace Customization AW004 2.4

Chapter 11: Simple examples

https://angularjs.org/
https://docs.angularjs.org/guide/databinding
https://docs.angularjs.org/guide/directive

Simple examples

The <aw-frame> attribute inserts HTML structure and CSS styling to correctly display the iframe
using the full width and height available in the page, column or section in which it is placed.

There are limitations on what can be shown in an iframe:

• Not all external URLs can be used within an <iframe> tag.

Some sites detect this tag and prevent their content from being displayed within an <iframe>
tag. This is a way sites control content display.

• Some browser, site, and network settings prevent some scripts from running if they come from a
Location other than the root Location of a page.

This capability, also called cross-site scripting, is a potential source of network attack.

For more information, see http://en.wikipedia.org/wiki/Cross-site_scripting.

This tag supports the following attribute:

src

This required attribute specifies the URL to be displayed in the iframe.

The src attribute supports data binding value substitution.

Specifying CSS styling

Creators of HTML content are free to specify their styling in their application. However, all existing
Active Workspace CSS styling selectors are available for use in HTML content contributed by the
<htmlPanel> tag. Use these existing styling selectors to save time and ensure UI consistency.

Note

For a list of all available CSS selector class names and their intended uses, see the
thinclient/styleguide.html file available in the development environment.

AW004 2.4 Active Workspace Customization 11-23

Simple examples

Chapter 12: Examples using code scaffolding

Code scaffolding overview
These customizations require changes to the core client application, the awc.war file. You will create
one or more modules to contain your custom code. After performing these modifications, you must
recompile the WAR file using the gwtCompile script.

Active Workspace makes use of Node.js and gulp. Both of these are already part of the Active
Workspace client installation, as well as the required node modules and dependencies.

The machine on which the WAR file is built must have:

• Java JDK 7 64-bit.

• A minimum of 16 GB of free physical RAM (unused by other applications) to avoid paging.
Siemens PLM Software recommends that the machine used have a minimum of 24 GB.

Use the provided generateModule script to add the following customizations to Active Workspace:

• Theme

• One-step command

• Type icon

• Location

• Location command

• Sublocation

• Navigation panel

• Tools and information panel

• Property policy

Use generateModule to create a new module
The generateModule script is located in the Active Workspace STAGE directory,
TC_ROOT\aws2\stage. The script creates basic boilerplate code for the various module components.
It must be run from your new module's directory.

Three main steps create Active Workspace customizations:

• Create the Java and GWT modules.

These contain your customizations.

AW004 2.4 Active Workspace Customization 12-1

Chapter 12: Examples using code scaffolding

• Create module components.

For example: sublocations, one-step commands, navigation panels, and so on.

• Create the kit.json file.

All of this can be organized within your staging location's source directory.

Create the Java and GWT modules

1. Create a new directory at STAGE\src to contain your custom module.

STAGE\src\myModule

2. Change to your new module directory.
cd STAGE\src\myModule

This and all following steps must be performed from a command line.

3. Run the generateModule script.
..\..\generateModule

The script does not require any arguments. If none are provided, it will prompt you to enter the
information it needs.

4. Create the files for a new Java module by following the prompts.
Enter type to generate: java
Enter module name (Required):myJavaModuleName
Enter module description:My Java module description
[12:34:56] [Info] Creating java module
[12:34:56] Successfully created java module myJavaModuleName

This creates a src directory within your module directory and the module.json file.

5. Run the generateModule script again, this time to create the gwt module information.
Enter type to generate: gwt
Enter fully qualified GWT module id (Required):com.mycompany.mymodule.myGWTModuleId
Enter GWT module description:My gwt module description
[12:34:56] [Debug] Creating gwt module myGWTModuleId
[12:34:56] Successfully created gwt module myGWTModuleId

This creates the gwt.xml file for the module as well as several Java source files under the src
directory for localization, interface, injector, resources, and so on.

Your new module is ready to be populated with custom Active Workspace components.

Create module components

Continue to use the generateModule script to create locations, type icons, tool and information
panels, and so on.

12-2 Active Workspace Customization AW004 2.4

Chapter 12: Examples using code scaffolding

Examples using code scaffolding

Caution

generateModule automatically updates the files in your module directory each time you run it.
However, once you begin to edit these files to add your custom code, the script may not be
able to make the required changes. It is recommended to create all the module pieces that you
require before beginning to write your code.

Create the kit

The final step to include a custom module into the war build is to create a kit.json file. This file
tells the war build to include your custom module and add the required inherits statement into the
primary GWT XML file used for the GWT compile. An existing kit.json file can be copied, or the
generateModule script can be run using the kit type. The kit name value must be unique within
your stage directory.

Enter type to generate: kit
Enter kit name {Required):MyKit
[12:34:56] [Info] Creating kit.json

Note

Once all your customization code has been written, use the gwtCompile script to build your
new WAR file.

The module.json file

A module file is only compiled and added to the WAR file if it is referred to by a kit file. A module
may list other modules as dependents.

The module.json file contains the following information:

name This is the name of the module.
type This is the type of module. Currently, this value will only be java.
dependencies This is a list of other module names that are required.

The kit.json file

Kit files are discovered by the gwtCompile script. They list the modules that are compiled and
added to the WAR file.

The kit.json file contains the following information:

name This must be a unique name amongst the other kits in your stage directory.
modules This is a list of the modules (defined by modules.json) that are part of this kit.
gwtModulesDeps This is a list of GWT modules references which are insterted into the primary

GWT XML file as inherits statements.

Upgrading from hand-written or Maven-type modules

The following steps detail how to upgrade any existing modules that were created from scratch
or by using the Maven archetypes.

1. Copy or link your existing customization code under STAGE/src.

AW004 2.4 Active Workspace Customization 12-3

Examples using code scaffolding

Chapter 12: Examples using code scaffolding

2. In the directory with your existing pom.xml file, create the following module.json file. You can
use the artifactId from your pom.xml file for your-module-name if you prefer.

{
"name": "your-module-name",
"type": [

"java"
]

}

3. If you need to declare a dependency on another one of your custom modules, you can add a
dependencies array to declare this dependency.

{
"name": "your-module-name",
"type": [

"java"
],
"dependencies": [

"your-other-module-name"
]

}

4. Delete the pom.xml file.

Creating custom themes

Cascading style sheets (CSS) in Active Workspace

The Active Workspace client uses CSS3 to control the layout and styling of the web application. CSS
is an industry standard that provides a modern interface consistent across multiple platforms.

CSS layers

Active Workspace uses five cascading levels of CSS evaluated in the following sequence:

1. reset.css and base.css

Specifies appearance of base HTML elements such as heading one (<H1>) and line break
(
) tags. It also specifies common base definitions rules.

2. layout.css

Specifies top-level elements such as location, sublocation, and panel classes. Classes should be
reused in higher level style sheets.

3. module_name.css

There are many modules with only one CSS file per module. It is located in the staticresources
folder in each module.

4. state.css

Specifies states such as active, hidden, and expanded.

5. ui-lightTheme.css and ui-darkTheme.css

12-4 Active Workspace Customization AW004 2.4

Chapter 12: Examples using code scaffolding

Examples using code scaffolding

Only one theme is applied at any given time. The customizer uses generateModule to create
ui-custom_theme_name.css.

Note

Do not modify provided theme files. Always create a custom theme file for modifications.

During the build phase, all CSS files except themes are concatenated into a single main.css file.

The files are concatenated in this order:

Note

Theme files are not concatenated. The current theme ID is stored in a cookie and toggled
dynamically.

All module files are concatenated between the layout.css and state.css files, but the order of
the modules is not guaranteed. If you have the same tag in different modules, unexpected
results may occur.

When CSS classes override each other, the last file takes precedence. The reset.css file is
overridden by all, and the state.css file overrides everything except the theme CSS.

Location of CSS files in Active Workspace

Framework-level CSS files (reset.css, base.css, layout.css. state.css, and theme CSS files) are
located in the fx-ui staticresources project.

Module CSS files are located in the module/staticresources directory for each module.

CSS naming pattern

CSS files names are the unique names of the module, such as search.css, change.css, viewer.css,
and docMgmt.css.

CSS class names follow this pattern: aw-xxx-yyy.

• aw: Active Workspace

• xxx: the containing CSS file name, without the .css extension

• yyy: the semantic meaningful name

AW004 2.4 Active Workspace Customization 12-5

Examples using code scaffolding

Chapter 12: Examples using code scaffolding

Note

Do not use names based on current position (top, LeftHandSide) or style characteristics
(RedWithPadding).

Example CSS class names:

aw-base-scrollPanel
aw-layout-commandBarHorizontal
aw-search-searchContainer
aw-layout-popup

Styling guide

The styling guide, located in war-location/Thinclient/styleguide.html, shows all objects as they
should be rendered throughout Active Workspace.

The styling guide is automatically synchronized because it uses the actual application CSS.

Custom theme overview

Active Workspace supports predefined user interface (UI) themes delivered with the framework. This
provides a centralized mechanism to control the overall UI look-and-feel across client applications.

Themes control:

• The background color or background image for web pages.

• Text styling for fonts, color, and sizing.

Themes are not intended to control the specific chrome (size, location, behaviors) of the UI for
widgets. Rather, themes provide a common definition for the overall styling of colors, fonts, and sizing
to ensure consistency in look-and-feel across all client UI and widgets.

• Themes are driven from a main CSS definition (per theme).

• Users can change themes dynamically while running the client.

• Theme selection is retained in subsequent sessions.

Each theme is defined in a main cascading style sheet (CSS) file.

This provides a layer of abstraction for the component level CSS, which accesses common CSS
class names.

Two themes are provided with Active Workspace:

12-6 Active Workspace Customization AW004 2.4

Chapter 12: Examples using code scaffolding

Examples using code scaffolding

• ui-lightTheme.css: low contrast colors

• ui-darkTheme.css: high contrast colors

To add a custom theme to Active Workspace, implement the ITheme class.

• The _Theme class implements ITheme.

• UniqueId is the theme package name.

• The displayed string is stored in the theme constants.

AW004 2.4 Active Workspace Customization 12-7

Examples using code scaffolding

Chapter 12: Examples using code scaffolding

Note

The ui-darkTheme.css and ui-lightTheme.css files are located in war-location/thinclient/.
Refer to these files while creating your ui-customTheme.css file.

Theme CSS classes

The Active Workspace *.css files contain CSS classes.

These CSS classes control objects in the *.ui.xml files:

Note

The ui-customTheme.css file is empty when the module is created.

The ui-darkTheme.css and ui-lightTheme.css files are located in war-location\thinclient.
Use these files as guides to create your staticresources\ui-customTheme.css file.

Edit the CSS live

You can use a web browser to view and edit the generated HTML and CSS files. This lets you see
how the HTML was constructed and lets you style changes before adding them to the code and
without rebuilding and reloading for each change.

Note

The example uses the Mozilla Firebug plug-in. Internet Explorer and Google Chrome provide
similar tools that can accessed by pressing F12.

12-8 Active Workspace Customization AW004 2.4

Chapter 12: Examples using code scaffolding

Examples using code scaffolding

1. Restart the server with your edits in place, and log on.

2. Press F12 to start the web browser style viewer.

3. Select an object in the user interface.

The style viewer highlights the selection in the user interface and shows the supporting HTML
and applied style for the selected object.

The style viewer lets you edit either the HTML or the CSS file; the running browser session is
updated dynamically.

After your changes are made, they can be copied into the ui-customTheme.css file.

Add a new theme to your module
Note

If you have not created a module yet, follow the steps to Use generateModule to create
a new module.

1. Open a command prompt and change to your module directory.
cd STAGE\src\myModule

2. Run the generateModule script, and use the theme argument.
Enter type to generate: theme
Enter theme name (Required):myThemeName
[12:34:56] [Debug] Creating theme myThemeName
[12:34:56] Successfully created theme myThemeName

This updates the gwt.xml file, and creates a css file for your new theme within your module directory.

Contributing commands

Command contribution constructs

To contribute commands, you need to understand command-related constructs and command
context, display, and handlers.

AW004 2.4 Active Workspace Customization 12-9

Examples using code scaffolding

Chapter 12: Examples using code scaffolding

Command-related constructs

• ICommandDisplay

Provides the visual characteristics, including the image resource and the title, for a command.

These separated visual aspects support alternate visual representations for a command behavior
and separates visual concerns from functional concerns.

• ICommandContext

The associated application state identifies the target, typically a selected object or data, for
the command.

• ICommandHandler

Represents the functional aspects and state, whether the command is enabled and visible,
and what occurs when the command is called.

Command display

ICommandDisplay represents the visual characteristics of a command instance, including the image
resource, text display string, and debug identifier values.

The ICommandDisplay information is provided by the ICommandHandler reference.

Command context

ICommandContext is the run-time state against which the command operates.

• The current implementation is tied to a selection context, required in most situations. When a
nonselection context is required, you can create a specific subclass that ignores or stubs out
the selection-oriented portion of the context.

• Changes in the context may initiate state changes in ICommandHandler.

ICommandHandler observes the command context and can react to changes. When the
command handler is sensitive to the current context, it can change state accordingly and become
a listener (observer) of the command context.

Command handler

ICommandHandler provides the focus for invocation and setting run context, and tracks the visual
state (Enabled/Visible).

• The handler is an observable object that lets you monitor state changes on the instance.

12-10 Active Workspace Customization AW004 2.4

Chapter 12: Examples using code scaffolding

Examples using code scaffolding

• Each ICommandHandler has a defined unique command handler.

• ICommandDisplay is also accessed from ICommandHandler.

• The command handler ID must follow a fully qualified name pattern to maintain unique identifiers.

Note

Use the package name of the GWT module and a functional name for the particular
command to help define a unique ID.

GWT injection (GIN) generates errors if a duplicate is encountered.

Command types

Commands are classified based on category, such as whether they require user input and where the
commands are contributed.

1 Global commands These commands appear in the global toolbar. They are present on
all pages and are universally applicable.

Examples include Home and Change Theme.

Note

A module can contribute a command in the global toolbar, but
this is not recommended. Only commands that apply across
all locations and sublocations should appear on the global
toolbar.

2 One-step
commands

These commands do not require user interaction.

Examples include Open Object and Cut Object.

See One-step commands for an example of adding a one-step
command.

AW004 2.4 Active Workspace Customization 12-11

Examples using code scaffolding

Chapter 12: Examples using code scaffolding

3 Tool and
information
commands

These commands require user interaction or inputs to get input
values or confirm steps.

Examples include Save Search and Perform Do Task.

A module can contribute a tool command to a sublocation of another
module.

4 Navigation
commands

These commands control the content of the main work area.

Examples include search filter and BOM configuration.

A module can contribute a navigation command to a sublocation
of another module.

The data content is controlled by the sublocation (work area) for the
other module. It can be used only with the published contract of that
sublocation.

One-step commands

The IOneStepCommandHandler is a marker interface to help classify this type of Active Workspace
command.

A one-step command is a stand-alone operation that requires no user input or intervention.

AbstractCommandHandler base class

AbstractCommandHandler is a base class for ICommandHandler shared implementation.

• This class provides consistent shared logic for all the command handler implementations.

• Most command handler implementations should inherit from this type.

12-12 Active Workspace Customization AW004 2.4

Chapter 12: Examples using code scaffolding

Examples using code scaffolding

Property value management and access to the declared values are provided by this class.

GIN binding command handlers

Most command handlers are declared and contributed to the application through GIN (GWT injection)
module declarations.

• Every command handler referenced by the configured application must be declared in GIN.

• After a command is declared, it can be bound to one or more containers within GIN.

To help with some of the verbose nature of GIN binding statements, helper functions are provided in
com.siemens.splm.clientfx.ui.commands.published.CommandsExtensionPointHelper.

Utility method to register a command handler
void com.siemens.splm.clientfx.ui.commands.published

.CommandsExtensionPointHelper

.registerCommandHandler(
GinBinder binder,
String commandId,
String commandHandlerId,
Class<? extends ICommandHandler> commandHandlerClass,
Class<? extends ICommandDisplay> commandDisplayClass)

Parameters:

binder GIN binder
commandId Identifier of the command for which this handler is defined

commandHandlerID
Identifier of the command handler

This can be the same as the command ID if there is only one handler
for the command.

commandHandlerClass Handler class

AW004 2.4 Active Workspace Customization 12-13

Examples using code scaffolding

Chapter 12: Examples using code scaffolding

commandDisplayClass
Display class

This is the class used by default, unless overridden in a widget.

Utility method to contribute a command to a command area
void com.siemens.splm.clientfx.ui.commands.published

.CommandsExtensionPointHelper

.contributeCommandToArea(
GinBinder binder,
String subLocationNameToken,
String commandAreaNameToken,
Class<? extends Provider<CommandId>> commandIdProviderType,
int order)

Parameters:

binder GIN binder
subLocatoinNameToken Sublocation name token
commandAreaNameToken Command area type, such as OneStep
commandIdProviderType CommandID provider class
order Order of command

Example: command to launch a web page
HelloWorldCommandHandler.java

package com.samples.internal.commands;

import com.google.gwt.user.client.Window;
import com.google.inject.Inject;
import com.google.inject.name.Named;
import com.samples.published.NameTokens;
import com.siemens.splm.clientfx.ui.commands.published.AbstractCommandHandler;
import com.siemens.splm.clientfx.ui.commands.published.ICommandDisplay;

/**
* HelloWorld command handler
*/
public class HelloWorldCommandHandler

extends AbstractCommandHandler
{

/**
* Constructor
*
* @param commandDisplay command display to use for this handler
* @param presenterProvider provider for presenter
*/
@Inject
public HelloWorldCommandHandler(
@Named(NameTokens.CMD_HelloWorld) ICommandDisplay commandDisplay)

{
super(NameTokens.CMD_HelloWorld, commandDisplay);

}

@Override
public void commandContextChanged()
{

/**
* In this method, you'll want to determine & set the enablement & visibilty
* of your command. This is typically done by querying the selection &
* making decision based upon it.

12-14 Active Workspace Customization AW004 2.4

Chapter 12: Examples using code scaffolding

Examples using code scaffolding

* E.g. Object selectedObject =
* getCommandContext().getSelection().getSelectedObject();
* selectedObject returned here is generally an IModelObject.
*
*/
setIsEnabled(true);
setIsVisible(true);

}

@Override
protected void doExecute()
{

/**
* In this method, you'll typically get the selection & execute the command
* on it.
*/

Window.open("http://www.plm.automation.siemens.com", "_blank", "");
}

}

HelloWorldCommandDisplay.java

package com.samples.internal.commands;

import com.google.gwt.resources.client.ImageResource;
import com.siemens.splm.clientfx.ui.commands.published.AbstractCommandDisplay;
import com.samples.internal.Resources;
import com.samples.resources.i18n.HelloWorldMessages;

/**
* Hello World command display
*/
public class HelloWorldCommandDisplay

extends AbstractCommandDisplay
{

/**
* Constructor
*/
public HelloWorldCommandDisplay()
{

super(HelloWorldMessages.INSTANCE.HelloWorldCommandTitle());
}

@Override
public ImageResource getIconResource()
{

return Resources.INSTANCE.getHelloWorldCommandImage();
}

}

#HelloWorldModule.java

package com.samples.internal.config;

import com.google.gwt.inject.client.AbstractGinModule;
import com.google.inject.Provider;
import com.siemens.splm.clientfx.ui.commands.published.CommandId;
import com.siemens.splm.clientfx.ui.commands.published.CommandsExtensionPointHelper;

import com.samples.internal.commands.HelloWorldCommandDisplay;
import com.samples.internal.commands.HelloWorldCommandHandler;
import com.samples.published.NameTokens;

/**
* Gin Module configuration for HelloWorld command

AW004 2.4 Active Workspace Customization 12-15

Examples using code scaffolding

Chapter 12: Examples using code scaffolding

*/
public class HelloWorldModule

extends AbstractGinModule
{

@Override
protected void configure()
{

CommandsExtensionPointHelper.registerCommandHandler(binder(),
NameTokens.CMD_HelloWorld, NameTokens.CMD_HelloWorld,
HelloWorldCommandHandler.class, HelloWorldCommandDisplay.class);

// Add the command to the global one step commands
CommandsExtensionPointHelper.contributeCommandToArea(binder(),

com.siemens.splm.clientfx.ui.published.NameTokens.GLOBAL_COMMANDS,
com.siemens.splm.clientfx.ui.published.NameTokens.ONE_STEP_COMMANDS,
HelloWorldCommandIdProvider.class, 10000);

}

/**
* Command ID Provider for HelloWorld command
*/
public static class HelloWorldCommandIdProvider

implements Provider<CommandId>
{

@Override
public CommandId get()
{

return new CommandId(NameTokens.CMD_HelloWorld);
}

}
}

Add a new one-step command to your module
Note

If you have not created a module yet, follow the steps to Use generateModule to create
a new module.

1. Open a command prompt and change to your module directory.
cd STAGE\src\myModule

2. Run the generateModule script, and use the command argument.
Enter type to generate: command
Enter one step command name (Required):myOneStepCommandName
[12:34:56] [Debug] Creating command myOneStepCommandName
[12:34:56] Successfully created command myOneStepCommandName

This updates the gwt.xml file, adds a placeholder icon png file, and Java source files for your new
one-step command within your module directory.

12-16 Active Workspace Customization AW004 2.4

Chapter 12: Examples using code scaffolding

Examples using code scaffolding

Type icons

Type icon overview

The default icon for revision objects is .

This module component allows you to change the icons based on the type of object.

You must define your own MyTypeIconModuleRegistry, which implements
ITypeIconModuleRegistry. Your MyTypeIconModuleRegistry uses your own MyResource
for image files. Your MyGinModel, which extends AbstractGinModule, registers your
MyTypeIconModuleRegistry with TypeIconExtensionPointHelper.

Add a new type icon to your module
Note

If you have not created a module yet, follow the steps to Use generateModule to create
a new module.

Type icons are all 46 x 46 pixels.

1. Open a command prompt and change to your module directory.
cd STAGE\src\myModule

2. Run the generateModule script, and use the type argument.
Enter type to generate: type
Enter type name (Required):myTypeIconName
[12:34:56] [Debug] Creating type myTypeIconName
[12:34:56] Successfully created type myTypeIconName

AW004 2.4 Active Workspace Customization 12-17

Examples using code scaffolding

Chapter 12: Examples using code scaffolding

This updates the gwt.xml file, and creates placeholder ai and png files, as well as a Java source
file for registering your icon to an object type.

Locations and sublocations

Location and sublocation overview

After logging on, append one of your sublocation names to your URL.

Example

http://localhost:8080/#Sample1

This takes you to your new location and displays the first sublocation.

Add a new location or sublocation to your module
Note

If you have not created a module yet, follow the steps to Use generateModule to create
a new module.

location

1. Open a command prompt and change to your module directory.
cd STAGE\src\myModule

2. Run the generateModule script, and use the location argument.
Enter type to generate: location
Enter location name (Required):myLocationName
[12:34:56] [Debug] Creating location myLocationName
[12:34:56] Successfully created location myLocationName

This updates the gwt.xml file, and creates a Java source file for your new location presenter.

12-18 Active Workspace Customization AW004 2.4

Chapter 12: Examples using code scaffolding

Examples using code scaffolding

sublocation

1. Open a command prompt and change to your module directory.
cd STAGE\src\myModule

2. Run the generateModule script, and use the subLocation argument.
Enter type to generate: subLocation
Enter sub-location name (Required):mySubLocationName
Enter the location to apply this sub-location to. (Required):myLocationName
[12:34:56] [Debug] Creating subLocation mySubLocationName
[12:34:56] Successfully created subLocation mySubLocationName

Note

The argument is subLocation, not sublocation; it is case-sensitive.

The name of the location to which you apply this sublocation is also case-sensitive.

This updates the gwt.xml file, and creates a Java source files for your new sublocation and primary
work area presenters.

Navigation panel

Navigation panel overview

In the search results, a new command is added in the navigation commands area.

When hovering on the command, the tool name is presented as a tooltip.

AW004 2.4 Active Workspace Customization 12-19

Examples using code scaffolding

Chapter 12: Examples using code scaffolding

When you click the TestTool button a panel displays the title, header, body, and footer sections of
the panel. The currently selected object’s display name appears as well; if no selection is made,
Nothing Selected appears.

When you select the Body checkbox, the footer is updated to display the OK button.

12-20 Active Workspace Customization AW004 2.4

Chapter 12: Examples using code scaffolding

Examples using code scaffolding

When you click the OK button, the panel hides and a message indicates that the operation is
complete. For this example, nothing is actually performed on the selected object.

Add a new navigation panel to your module

Note

If you have not created a module yet, follow the steps to Use generateModule to create
a new module.

1. Open a command prompt and change to your module directory.

cd STAGE\src\myModule

2. Run the generateModule script, and use the navPanel argument.
Enter type to generate: navPanel
Enter navigation panel name (Required):myNavPanelName
[12:34:56] [Debug] Creating navPanel myNavPanelName
[12:34:56] Successfully created navPanel myNavPanelName

This updates the gwt.xml file, creates placeholder ai and png files, as well as a Java source file for
view, view model, UI handler, command display and handler, and presenter.

AW004 2.4 Active Workspace Customization 12-21

Examples using code scaffolding

Chapter 12: Examples using code scaffolding

Tools and information panel

Tools and information panel overview

In the user’s home folder, a new command is added in the tools and information commands area.
When hovering on the command, the tool name is displayed as a tooltip.

When you click the MyTool button, a panel displays the title, header. body, and footer sections of the
panel. The currently selected object’s display name appears as well; if no selection is made, then
Nothing Selected appears.

12-22 Active Workspace Customization AW004 2.4

Chapter 12: Examples using code scaffolding

Examples using code scaffolding

When you select the Body checkbox, the footer is updated to display the OK button.

When you click the OK button, the panel hides and a message indicates that the operation is
complete. For this example, nothing is actually performed on the selected object.

AW004 2.4 Active Workspace Customization 12-23

Examples using code scaffolding

Chapter 12: Examples using code scaffolding

Add a new tools and information panel to your module
Note

If you have not created a module yet, follow the steps to Use generateModule to create
a new module.

1. Open a command prompt and change to your module directory.
cd STAGE\src\myModule

2. Run the generateModule script, and use the theme argument.
Enter type to generate: toolsInfoPanel
Enter tools and info panel name (Required):MyTnIPanelName
[12:34:56] [Debug] Creating toolsInfoPanel MyTnIPanelName
[12:34:56] Successfully created toolsInfoPanel MyTnIPanelName

This updates the gwt.xml file, creates placeholder ai and png files, as well as a Java source file for
view, view model, UI handler, command display and handler, and presenter.

12-24 Active Workspace Customization AW004 2.4

Chapter 12: Examples using code scaffolding

Chapter 13: Using property widgets

Property widget overview
Property widgets are a common set of widgets available for rendering properties of different types in
Active Workspace. The following examples assume that you already have a place to put them: a
sublocation, a tool and information panel, a navigation panel, etc.

Common widget features
The set of widgets available for designing the application’s input and output interaction have the
following components in common.

If the field is... the user will see...
empty

required

modifed

invalid

• The property label is rendered flat and represents the name of the property.

Interface Enum IPropertyDataBoundWidget.PropertyLabelDisplay can be used to have
different styles of labels

PropertyLabelDisplay.NO_PROPERTY_LABEL does not display the property label.

PropertyLabelDisplay.PROPERTY_LABEL_AT_TOP displays the property label at the
top of the property value.

PropertyLabelDisplay.PROPERTY_LABEL_AT_SIDE displays the property label at the left
side of the property value.

• The property value is where the user places input.

This can change depending on the type of widget. The example shows a widget with a text area.
As the user enters value to this text area, it turns yellow indicating that the value is modified since
displayed. This is supported only if the widgets are data bound with the property in model.

This also supports having a real value and a display value. In most cases, the UI renders the
display values.

AW004 2.4 Active Workspace Customization 13-1

Chapter 13: Using property widgets

Standard Active Workspace widgets

StringTextBoxWidget

A text box widget capable of showing a string value. Use this to show a property of type string
with limited characters.

In read-only mode, the widget is displayed as shown.

StringTextAreaWidget

A text area widget capable of showing a string value in multiple lines. It is normally used to show
property values with larger character limits.

In read-only mode, the widget is displayed as shown.

LabelWidget

A label shows a value as label.

This widget is always read-only.

BooleanCheckBoxWidget

A Boolean widget capable of showing a value rendered as a check box.

In read only mode, the widget is displayed as shown.

13-2 Active Workspace Customization AW004 2.4

Chapter 13: Using property widgets

Using property widgets

In Teamcenter 9:

In Teamcenter 10:

BooleanRadioBoxWidget

A Boolean widget capable of showing a value rendered with radio buttons.

In read-only mode, the widget is displayed as shown.

In Teamcenter 9:

In Teamcenter 10:

BooleanToggleButtonWidget

A text box widget capable of showing a string value. Use this to show a property of type string
with limited characters.

The toggle button has two states On and Off. The labels can be customized through the constructor.

On/True

Off/False

IntegerTextBoxWidget

A text box widget capable of showing an integer value. It looks exactly like StringTextBoxWidget.
However, it does not accept non-integer values as input. When the user tries to type in a noninteger
value, it deletes the value after validation.

DoubleTextBoxWidget

A text box widget capable of showing a double value. Similar to IntegerTextBoxWidget, it also
does not accept any nondouble values as input.

ObjectLinkPropertyWidget

A widget capable of showing a Teamcenter object reference, either External, Typed, or Untyped.

AW004 2.4 Active Workspace Customization 13-3

Using property widgets

Chapter 13: Using property widgets

Unpopulated

Populated

In read-only mode, the widget is displayed as shown. The value is a link that the user can use to
navigate to the object.

DateWidget

A widget capable of showing a Teamcenter date property.

UI features of the date widget

• Separate date and time selection.

• The date selector.

• The time selector.

• You can manually enter date and time; the calendar display is kept synchronized.

13-4 Active Workspace Customization AW004 2.4

Chapter 13: Using property widgets

Using property widgets

Availability

The date widget is available:

• In an XRT panel.

The choice to have a time selector is configurable through code only.

• In an HTML panel.

They can be configured through a style sheet.

<page title="HTML Panel">
<htmlPanel>
<![CDATA[
<div class="aw-layout-panelSectionContent">
<div class="aw-widgets-propertyContainer">
<aw-property prop="selected.properties['object_name']"</aw-property>
<aw-property prop="selected.properties['start_date']"></aw-property>

</div>
</div>

]]>
</htmlPanel>

</page>

• Using UIBinder.

Property widget examples

Property widget examples overview

In this example, you open a tool and information panel showing a few COTS widgets. The button
in the tools and information command bar is contributed in our sample. When you click the command,
a Car Comparison Criteria panel displays the example widgets.

AW004 2.4 Active Workspace Customization 13-5

Using property widgets

Chapter 13: Using property widgets

Prerequisites

A tool and information command is already defined with the
CarComparisonCriteriaCommandHandler command handler , which appears in a panel in
CarCriteriaCommandPresenter.

In this example, a reusable features panel is created which can be plugged into a sublocation, or a
tool and information panel, and so on. In this example, FeaturePresenter is shown as a subpresenter
in CarCriteriaCommandPresenter presenter. It is injected to CarCriteriaCommandPresenter.

The class definition for feature presenter with its view interface in
com.siemens.splm.samples.cotsWidgets.internal.presenters package follows.

/**
* Car Feature Presenter
*/
public class FeaturePresenter

extends AbstractPresenterWidget<FeaturePresenter.MyView>
implements UiHandlers

{
//constructor

/**
* View interface
*/

13-6 Active Workspace Customization AW004 2.4

Chapter 13: Using property widgets

Using property widgets

public interface MyView
extends View, HasUiHandlers<UiHandlers>

{
}

}

Add property widgets

Add imports

To use the provided widgets in the FeatureView.ui.xml file, add the following definitions of XML
namespace prefixes in the file:

xmlns:uiw="urn:import:com.siemens.splm.clientfx.ui.widgets.published"

xmlns:tcuiw="urn:import:com.siemens.splm.clientfx.tcui.widgets.published"

To use the localized constants, add:
<ui:with

type="com.siemens.splm.samples.cotsWidgets.resources.i18n.CotsWidgetsConstants"
field="resi18n" />

To use the provided property label display style, import IPropertyDataBoundWidget:
<ui:import

field="com.siemens.splm.clientfx.ui.databind.published.view.IPropertyDataBoundWidget
.PropertyLabelDisplay.*" />

Add widget declaration

Each widget used to build the UI uses the following format:
<uiw:{WidgetClass} ui:field=”…” propertyLabelDisplay="{PROPERTY_LABEL_AT_TOP}"

isEditable="…" propertyLabel="…" value="…" bindValue="…"
isRequired="…" maxLength="…" numberOfCharacters="…" />

Properties supported in UI binder declaration:

{WidgetClass} – This should be replaced by the widget to be used in UI building.

ui:field – The value for this should be a unique name in a panel. If required, this name is used to
inject the widget with @UIField annotation in the FeatureView.java file.

propertyLabelDisplay – This property is used to define the property label display style for the
widget. The value for this should be NO_PROPERTY_LABEL, PROPERTY_LABEL_AT_TOP,
or PROPERTY_LABEL_AT_SIDE.

isEditable – This property is used to show the widget in editable or read only mode. It takes the
values True and False.

value – This property is used set an initial value to the widget. It takes a string value.

isRequired – This property is used to configure the widget as required. It takes True and False
values. If the value is set to True, a word Required appears inside or next to the value field.

maxLength – This property is used to set the maximum number of characters that is allowed in the
input field. For example, if the maxLength is set to 15, the user cannot type a string more than
15 characters long.

AW004 2.4 Active Workspace Customization 13-7

Using property widgets

Chapter 13: Using property widgets

numberOfCharacters – This property can be used to set the maximum number of characters that is
displayed in the value. For example, if numberOfCharacters is set to 25, the user cannot see
more than the first 25 characters of the string.

bindValue – This property is used to set the binding key or constant between a widget and a property.
This must be set if the widget needs to be data bound.

StringTextBoxWidget example

To use this widget with themodel property of type string, add the following in the FeatureView.ui.xml
file.

<uiw:StringTextBoxWidget ui:field="model"
propertyLabelDisplay="{PROPERTY_LABEL_AT_TOP}" isEditable="true"
propertyLabel="{resi18n.Model}" value="" bindValue="model"
isRequired="true" />

StringTextBoxWidget is instantiated for the model property.

propertyLabelDisplay="{PROPERTY_LABEL_AT_TOP}" signifies that the property label appears at the
top of the property value.

isEditable=”true” displays the widget as editable.

propertyLabel="{resi18n.Model}" The localized label of the property is provided by the resi18n
field defined in the XML file.

value="" means that no initial value is displayed in the input field.

isRequired="true" marks the widget as required.

bindValue="model" The binding key or constant is set between the widget and the model property.

Note

StringTextBoxWidget and LabelWidget are very similar to StringTextBoxWidget and can
be declared similarly.

BooleanRadioBoxWidget example

To use this widget with the alloyWheels property of type string, add the following in the
FeatureView.ui.xml file.

<uiw:BooleanRadioBoxWidget ui:field="alloyWheels" isEditable="true"
propertyLabel="{resi18n.AlloyWheels}" value="False"
bindValue="alloyWheels" />

BooleanRadioBoxWidget is instantiated for the alloyWheels property.

propertyLabelDisplay is not currently supported for Boolean widgets.

propertyLabel="{resi18n.AlloyWheels}" The localized label of the property is provided by the
resi18n field defined in the XML file.

value can not be blank for Boolean widgets.

13-8 Active Workspace Customization AW004 2.4

Chapter 13: Using property widgets

Using property widgets

numberOfCharacters and maxLength are not supported for Boolean widgets.

bindValue="alloyWheels" The binding key or constant is set between the widget and the alloyWheels
property.

Note

BooleanCheckBoxWidget and BooleanToggleButtonWidget are very similar to
BooleanRadioBoxWidget and can be declared similarly.

IntegerTextBoxWidget example

To use this widget with the seatCap property of type string, add the following in the
FeatureView.ui.xml file.

<uiw:IntegerTextBoxWidget ui:field="seatCap" isEditable="true"
propertyLabel="{resi18n.SeatCapacty}" value="5" isRequired="false"
bindValue="seatCap" />

IntegerTextBoxWidget is instantiated for the seatCap property.

propertyLabelDisplay is not currently supported for integer widgets.

propertyLabel="{resi18n.SeatCapacity}" The localized label of the property is provided by the
resi18n field defined in the XML file.

value can not be blank for integer widgets; it must be set to an integer.

numberOfCharacters and maxLength are not supported for integer widgets.

bindValue="seatCap" The binding key or constant is set between the widget and the seatCap
property.

DoubleTextBoxWidget example

To use this widget with the mileage property of type string, add the following in the
FeatureView.ui.xml file.

<uiw:DoubleTextBoxWidget ui:field="mileage" isEditable="true"
propertyLabel="{resi18n.Mileage}" value="14.6" isRequired="false"
bindValue="mileage" />

DoubleTextBoxWidget is instantiated for the mileage property.

propertyLabel="{resi18n.Mileage}" The localized label of the property should be provided by the
resi18 field defined in the XML file.

value can not be blank for double widgets. To set a value like 14, specify value="14d".

bindValue="mileage" The binding key or constant is set between the widget and themileage property.

ObjectlinkPropertyWidget example

To use this widget with the engine property of type string, add the following in the FeatureView.ui.xml
file.

<tcuiw:ObjectlinkPropertyWidget ui:field="engine" isEditable="true"

AW004 2.4 Active Workspace Customization 13-9

Using property widgets

Chapter 13: Using property widgets

propertyLabel="{resi18n.Engine}" bindValue="engine" />

ObjectlinkPropertyWidget is instantiated for the engine property.

propertyLabel="{resi18n.Engine}" The localized label of the property is provided by the resi18
field defined in the XML file.

propertyLabelDisplay is not currently supported for object link widgets.

value, numberOfCharacters and maxLength are not supported for object link widgets.

bindValue="engine" The binding key or constant is set between the widget and the engine property.

Define the view

To define the view for FeaturePresenter, create a FeatureView class that uses UiBinder to build the
UI containing the widgets. To work with the widgets and provide some action on them, inject them
with @UiField annotation.

The following code shows where FeatureView implements FeaturePresenter.MyView:
/**
* Car Feature view
*/
public class FeatureView

extends ViewWithUiHandlers<UiHandlers>
implements MyView

{
/**
* Widget
*/
private final Widget m_widget;
/**
* model property widget
*/
@UiField
StringTextBoxWidget model;
/**
* alloy wheels property widget
*/
@UiField
BooleanRadioBoxWidget alloyWheels;
/**
* Ui binder
*/
public interface Binder

extends UiBinder<Widget, FeatureView>
{

//
}
/**
* Constructor
*
* @param binder Ui binder
*/
@Inject
public FeatureView(final Binder binder)
{

m_widget = binder.createAndBindUi(this);
initWidget();

}
}

13-10 Active Workspace Customization AW004 2.4

Chapter 13: Using property widgets

Using property widgets

Provide data binding to property widgets

• To make the widgets in the feature view data bound, FeaturePresenter.MyView should extend
IDataBoundWidgetContainer.

/**
* View interface
*/
public interface MyView

extends View, HasUiHandlers<UiHandlers>, IDataBoundWidgetContainer
{
}

• A member variable is defined in FeatureView to list the set of widgets that are data bound:
/**
* List of data bound widgets in the section.
*/
private final List<IDataBoundWidget<?>> m_dataBoundWidgets = new ArrayList<>();

Implement the interface methods in FeatureView:

@Override
public List<IDataBoundWidget<?>> getDataBoundWidgets()
{

return m_dataBoundWidgets;
}

@Override
public List<ICollectionBoundWidget> getCollectionBoundWidgets()
{

return null;
}

Note

This list is populated in the constructor of FeatureView with the widgets injected with
@UiField annotation. See the sample code for implementation.

• FeatureViewModel is the view model for FeatureView:
/**
* Feature View Model
*/
public class FeatureViewModel

extends AbstractTcViewModel
{

/**
* model property
*/
public static final String MODEL = "model”; //$NON-NLS-1$

/**
* alloyWheels property
*/
public static final String ALLOY_WHEELS = "alloyWheels"; //$NON-NLS-1$

}

AW004 2.4 Active Workspace Customization 13-11

Using property widgets

Chapter 13: Using property widgets

• bindValue in UIBinder

The widget declaration in UIBinder has a property called bindValue. This value for this property
provides the key to bind the property with a widget. This is mostly the property name; as in a
panel, the property name is unique.

<uiw:StringTextBoxWidget ui:field="model"
propertyLabelDisplay="{PROPERTY_LABEL_AT_TOP}" isEditable="true"
propertyLabel="{resi18n.Model}" value="" bindValue="model"
isrequired="true" />

• Binding view and view model

To bind the view and the view model, the FeaturePresenter calls:

IDataBindInjector.INSTANCE.getDataBinder().bind(getView(), m_viewModel);

• Setting the default binding scope to view model object

In FeatureViewModel, a view model object (viewModelObject) is instantiated containing the
properties corresponding to the view. The binding scope is set to this model object.

setBindObject(AbstractViewModel.DEFAULT_DATA_BIND_SCOPE, viewModelObject);

• To check if data binding is working properly, enter a value to the model property to see the
field become yellow as the value is modified.

13-12 Active Workspace Customization AW004 2.4

Chapter 13: Using property widgets

Siemens Industry Software

Headquarters
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 972 987 3000

Americas
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 314 264 8499

Europe
Stephenson House
Sir William Siemens Square
Frimley, Camberley
Surrey, GU16 8QD
+44 (0) 1276 413200

Asia-Pacific
Suites 4301-4302, 43/F
AIA Kowloon Tower, Landmark East
100 How Ming Street
Kwun Tong, Kowloon
Hong Kong
+852 2230 3308

About Siemens PLM Software

Siemens PLM Software, a business unit of the Siemens
Industry Automation Division, is a leading global provider
of product lifecycle management (PLM) software and
services with 7 million licensed seats and 71,000 customers
worldwide. Headquartered in Plano, Texas, Siemens
PLM Software works collaboratively with companies
to deliver open solutions that help them turn more
ideas into successful products. For more information
on Siemens PLM Software products and services, visit
www.siemens.com/plm.

© 2015 Siemens Product Lifecycle Management
Software Inc. Siemens and the Siemens logo are
registered trademarks of Siemens AG. D-Cubed,
Femap, Geolus, GO PLM, I-deas, Insight, JT, NX,
Parasolid, Solid Edge, Teamcenter, Tecnomatix and
Velocity Series are trademarks or registered trademarks
of Siemens Product Lifecycle Management Software
Inc. or its subsidiaries in the United States and in other
countries. All other trademarks, registered trademarks
or service marks belong to their respective holders.

	Contents
	Contents
	Part I: Customization overview
	1. Client application history and considerations
	2. Active Workspace user interface
	Pattern-based design
	Interface overview
	Global navigation toolbar
	Location
	Active Workspace back button
	Context control
	Global search
	Sublocations and primary navigation tabs
	Sublocation content
	Work area toolbar
	Work area header
	Primary work area
	Navigation command set
	Secondary work area
	Secondary nagivation tabs
	Tools and information command set
	Tools and information panel

	3. Common coding patterns
	Code base consistency
	Logging
	Resources
	API visibility
	Message reporting

	4. Active Workspace extensibility
	5. Framework architecture
	Model-View-Presenter (MVP)
	Dependency injection
	Extensibility
	Component architecture
	Component contracts
	Managing components

	6. View model and data binding
	Model-View-Presenter (MVP)
	Active Workspace client MVP elements
	Repetitive code patterns
	Data binder
	Data binding framework
	Properties in the view and view model
	Collections in view and view model

	View model
	View
	Presenter

	7. Service-oriented archictecture (SOA)
	SOA goals
	Framework support for REST services
	Programming model
	AsyncCallback implementation best practice
	Code autogeneration and integration into the build system
	Client data model
	Object property policy
	SOA checklist

	8. Client data model and the meta system
	Client data model
	Programmer-friendly interfaces
	Caching
	Events

	9. Active Workspace hosting
	10. FTSIndexer customization
	Overview of indexer customization
	Indexer customization prerequisites
	Further information

	Part II: Customization examples
	11. Simple examples
	Simple example overview
	Configuring the home page
	Overview of the home page configuration
	Reset the home page
	Protect a tile
	Hide a tile
	Create a new collection
	Add a tile to a collection
	Create a new tile type
	Create a tile template that creates a Part
	Action styles
	Theme index
	Tile sizes
	Provided icons

	Configuring page layout using style sheets
	Introduction to using XML rendering templates (XRT) with Active Workspace
	Considerations for using XRTs in Active Workspace
	Configure the information panel using XRTs
	Active Workspace-specific style sheets
	Modular style sheets
	Working with HTML panels in XRT
	HTML panel in Active Workspace XML rendering datasets
	Specifying a URL
	Specifying HTML content
	Data binding
	Specialized HTML tags
	Specifying CSS styling

	12. Examples using code scaffolding
	Code scaffolding overview
	Use generateModule to create a new module
	Creating custom themes
	Cascading style sheets (CSS) in Active Workspace
	Custom theme overview
	Theme CSS classes
	Edit the CSS live
	Add a new theme to your module

	Contributing commands
	Command contribution constructs
	Command types
	One-step commands
	AbstractCommandHandler base class
	GIN binding command handlers
	Example: command to launch a web page
	Add a new one-step command to your module

	Type icons
	Type icon overview
	Add a new type icon to your module

	Locations and sublocations
	Location and sublocation overview
	Add a new location or sublocation to your module

	Navigation panel
	Navigation panel overview
	Add a new navigation panel to your module

	Tools and information panel
	Tools and information panel overview
	Add a new tools and information panel to your module

	13. Using property widgets
	Property widget overview
	Common widget features
	Standard Active Workspace widgets
	StringTextBoxWidget
	StringTextAreaWidget
	LabelWidget
	BooleanCheckBoxWidget
	BooleanRadioBoxWidget
	BooleanToggleButtonWidget
	IntegerTextBoxWidget
	DoubleTextBoxWidget
	ObjectLinkPropertyWidget
	DateWidget

	Property widget examples
	Property widget examples overview
	Add property widgets
	Add imports
	Add widget declaration
	StringTextBoxWidget example
	BooleanRadioBoxWidget example
	IntegerTextBoxWidget example
	DoubleTextBoxWidget example
	ObjectlinkPropertyWidget example

	Define the view
	Provide data binding to property widgets

