Polarion Software® Guide
Working With Velocity Supporter White Paper - How to call Polarion from DOT-NET (rev. 4921)

— -~
POLARION

White Paper - How to call Polarion
from DOT-NET

Table of Contents

Contents
1L INEFOAUCTION. ... 1
2. Polarion WebService APl MethodoIOgY........c.cvevvevivvieieeiecieecece e, 1
3. Visual StUdIo INTBGratioN.c.ccveiiriiieeeie e, 2
3.1 BEIOIE YOU STAM.....cviiiicicic e 3
3.2 The .CSProj ProjeCt fileS.......voiiiiiieicee e 4
3.2.1.1 Adjusting the Connector to your environment..........c..cccoeveeeeiieevieineenns 4
3.2.1.2 How to USe it in your enVIrONMENt..........cccvevviiviiiiieiiieceeece e 5
3.2.1.3 BENiNG the SCENES......cviveiieiiieice e 6
4, SAMPIE USE CASES. .. .ivveveviitiiite ettt ettt bttt 6
4.1 Connecting with the CONNECLION ClaSS........cccoviiviiiiiiiiiieecccceeeee e 7
4.2 Retrieving WOTKITBMS.c.ooiiiiiieiecc e 7
4.3 Create a new Workltem and change data.............ccocoevevvivvieiicvicceceeee 7
4.4 Retrieving information from TeStRUNS.........ccccviviiviiiciiceee e, 8
5. Additional infOrmation.............c.oiviviiiii e 9

1 Introduction

This white paper describes how to use a .NET application to connect to the Polarion WebService APl as a WebService client. Examples
are implemented in C#, but any .NET programming language may be used.

2 Polarion WebService APl Methodology

The WebService Client connects to the Polarion WebServer by authenticating itself with a login() method call. When authentication is
successful the WebServer returns the value, True, and establishes a session between the client and the Polarion server. The Polarion
server will also provide a session identifier, which is not part of the return value, but is contained in the returned XML-file.

Copyright © 2015 Polarion Software - Permission is granted to reproduce and redistribute this document without modifications.

‘ —logln{user password)—b.

extracts the sessionid response to the WebService call
from the XML-File

XMLFile

sessionid

The sessionid will be extracted from the XML-File and stored in the connection to the Polarion server. Every time a WebService method
is called the sessionid has to be included in the transmitted XML-File. Since this is done via method calls that Visual Studio is providing
from wsdl files, an additional programming extension is needed to transparently retrieve the sessionid from the XML response file.

XMLFile

add
sessionid

queryWorkltems()

‘ <«——eturn found results

If the sessionid is not send with the XML-File, NotAuthenticatedException is returned. The sessionid has a lifetime of 10 minutes so
if the client doesn’t call any method within this time frame the session is closed.

3 Visual Studio Integration
The .NET approach below may be used with MS Visual Studio 2010 or higher. The programming language is C#.

/) PpOLARION

3.1 Before you start
There two options to adapt the .NET integration software:

1. Double click on the solution file to open an MSVS instance and read the solution.

1. Utils
5 sampleWebSeriveAPLsIn

Note: If you run an MSVS version higher than 2010, you may be asked to convert the solution
and the projects to your current version.

2. Import the project into an existing solution
If you already have a solution (e.g. MySolution.sIn), right click on your solution (Add -> Existing Project ...),

Solution Explorer

i)

¥4 Solution 'MySolution' (3 projects)
» Bcf] SEABAY.Utils
» ¥4 Subversion.Wrapper
> #.5) TestDOMReading

.. .and import the projects contained in the sub directories into the solution.

Name ’ Name :
. bin . bin
. obj .. obj
. Properties \. Properties
. Service References (%] SamplePolarionWebServiceAPLcsproj

@ de.seabay.polarion.WSConnector.csproj

Once you have imported the projects into your solution and set the as the startup project, your Solution
Explorer should look like this:

Solution Explorer

T

-l-? Solution "MySolution' (5 projects)
b #E j de.seabay.polarion.WSConnector
» 5] SamplePolarionWebServiceAPI
» @[ZH SEABAY.Utils
> ¥ Subversion.Wrapper
> #5) TestDOMReading

/) POLARION

https://www.polarion.com/hubfs/Attachments/SampleWebServiceAPI.zip

3.2 The .csproj Project files
This section describes in detail the content of two files:

1. de.seabay.polarion.WSConnector
This is the Connector to the Polarion WebService APl and may also be used as a referenced assembly after adjusting it to your

environment. The output type is Class Library and it is a .NET Framework 4 compilation.

Application
N/A N/A
Build
—— Assembly name: Default namespace:
SEABAY.Polarion.WSConnector de.seabay.polarion
Debu
J Target framework: Output type:

Resources [.NET Framework 4 VI [Class Library v]
Services Startup object:

- ((Not set) - Assembly Information... |
Settings

2. SampleWebServiceAP
This Console Application is a sample of a Polarion WebService Application. The following section details how the Console
Application:
e Retrieves Workltems
e (Changes data and stores the data changes
e Retrieves information from a given TestRun

Note: The sample application uses the de.seabay.polarion.WSConnector. Without the usage of this Connector/Assembly a connection
cannot be established.

e BuilderWebService

e PlanningWebService

e ProjectWebService

e SecurtityWebService

e SessionWebService

e TestManagementWebService

e TrackerWebService

Specifics of each service are documented in the Polarion JavDoc API at http://almdemo.polarion.com/polarion/sdk/doc/javadoc/

index.html.

3.2.1.1 Adjusting the Connector to your environment

Update the WebService API to connect to your Polarion Server and version of Polarion in the ServiceReferences menu of the connector

project:
4 |_y Service References

@ Builder

@ Planning

+@: Project

+@ Security

+@: Session

+@ TestManagement
+@: Tracker

/) PpOLARION

https://www.polarion.com/hubfs/Attachments/SampleWebServiceAPI.zip

Right-click on each service reference and adjust the server settings to map to your environment. In our example we reference alm-
demo server, but you will, of course, substitute the server names in your environment.

Client
Address: http://almdemo.polarion.com/polarion/ws/services/PlanningWebServicelwsdl
Access level for generated classes: Public -]

["] Generate asynchronous operations

3.2.1.2 How to use it in your environment

To use the Connector in your environment, add P 5@ Samplel;oiaﬁonWebSewiceAPI

it as a referenced Assembly. Right-click on the > ¥i=d| Properties

References sub-menu, and add it either as a 4 |7 References

project reference or a .dll file. -3 de.seabay.polarion.WSConnector
«3 Microsoft.CSharp
«3 System
<3 System.Core

«(3 System.Data

<3 System.Data.DataSetExtensions
«(3 System.ServiceModel

-3 System.Xml

<3 System.Xml.Ling

P (SR [——

Add namespace de.seabay.polarion for each lusing System;

WebService you would like to use: us%"g 5y Stem'c?uedio"s -Generic;
using System.Linq;

using System.Text;

using de.seabay.polarion;
using de.seabay.polarion.Tracker;

To use the capabilities of the Connector you need to instantiate a new WSConnector class the assembly will provide to Constructors.
The first one accepts a Uri and the second one accepts a protocol and a serverUrl.

public class WSConnector

{

#region Constructor

fAf <summary>

/// Constructs the class from an Uri.

/// </summary>

/// <param name="uri">The Uri which provides the web services.</param>
public WSConnector(Uri uri)

{

PolarionUri = new Uri(uri, Strings.BASEWSURL);

/// <summary>

/// Constructs the class from the protocol and the server.

/// </summary>

/// <param name="protocol">The protocol of the Uri like http:// or https://.</param>
/// <param name="serverUrl">The server of the Uri including the port number.</param>
public WSConnector(string protocol, string serverUrl)

1
StringBuilder url = new StringBuilder(protocol);
url.Append(serverUrl);
PolarionUri = new Uri(new Uri(url.ToString()), Strings.BASEWSURL);
}

#endregion Constructor

M POLARION www.polarion.com

Start a new instance with either Constructor, and call the connect method:

WSConnector Factory = new WSConnector("http://", "almdemo.polarion.com");
Factory.Connect();

If the WSConnect does not connect to all WebServices, use the provided classes. Otherwise an exception will be returned and the
connection to the Polarion WebService will not be established.

Each WebService connection is stored in the WSConnector and is provided from the WSConnector as a list of WebServices. You can
use the connection directly by obtaining the object reference from the list, assuming the variable Factory contains the class reference
to the WSConnector (see above):

public TrackerWebServiceClient Tracker { get { return Factory.WebServices[WebServiseFactory.Tracker]; } }

If you want to call the queryWorkltems method from the TrackerService, take the Tracker variable, add the method call, and provie the
parameter.

WorkItem[] wilist = Tracker.queryWorkItems("type:requirement”, "id", new string[] { "id", "title" });

3.2.1.3 Behind the scenes

The .NET Framework provides classes that can be overwritten in order to manipulate the XML-Files received from the WebServer and
sent to the WebServer.

The class SessionldBehavior registers a Sessinldinspector. The class is implemented in the file Sessionldinspector.cs. This class does
the work and overwrites the following methods:
e AfterReceiveReply: This method is called after the XML-File is retrieved from the WebService and before the method returns.
It looks for an attribute sessionID in the XML-File and detects where the sessionid is stored as a private property within the
class.
e BeforeSendRequest: This method works in the opposite direction when the client sends a request to the WebServer. Here,
previously stored sessionid is added to the attributes of the XML-File after the client calls the method and before the XML-File
is send to the WebServer.

4 Sample use cases

This section describes some WSConnector sample use cases. The Console Application contains all sample use cases. Each use
case can be called with a different parameter call to the exe file:

e -rquery
Retrieving Workltems
e -C

e -t testRunidunid
Retrieving information from TestRuns

Each sample use case is implemented in an own method. Before each of the methods can be called a connection to the

WebService has to be established, as previously described. encapsulates methods in the connection class
in G# file connection.cs, and takes care of all the house keeping and provides the WebServices as properties.

/) PpOLARION

https://www.polarion.com/hubfs/Attachments/SampleWebServiceAPI.zip

4.1 Connecting with the Connection class

You should connect with the Connection class by instantiating it, and providing the protocol and the server. Here we are using the
Polarion almdemo server available at almdemao.polarion.com. Also for this documentation we created an account with user name and
password of seabay.

static void Main(string[] args)
{
Connection con = new Connection(“http://", "almdemo.polarion.com™);

con.login("seabay"”, "seabay");

if (con.IsloggedIn == true)

{

Once the connection is established a case can be called.

4.2 Retrieving Workltems

This use case is implemented in the method GetWorkltems.
It prints all Workltems of the provided query on the console and waits for the user to enter any key. It can easily change to also support

sgl queries.
static void GetWorkItems(string query)
{
WorkItem[] wilList = con.Tracker.queryWorkItems(query, null, new string[] { "id", "title" });
int index= 1;
foreach (WorkItem wi in wilist)
{
Console.WriteLine("({@}) = {1} - {2}", index++, wi.id, wi.title);
}
Console.ReadKey();
}

4.3 Create a new Workltem and change data

This use case is implemented in the method ChangeWorkltems.
It shows how WebServices can be used to create a new workitem and perform an action on that workitem. When a new
workitem is created the projectid and the type of the workitem must be provided. The title should also be set.

This use case shows how a custom field with a multi selectable enumeration can be set. In this case, a new instance of the
Workltem class will be filled with the data before calling the createWorkltem of the TrackerWebService.

static void ChangeWorkItems(string workItemType)
{
// create a new WorkItem instance
TrackerService.WorkItem newWorkItem = new TrackerService.WorkItem();

// set project
newWorkItem.project = new TrackerService.Project();
newWorkItem.project.uri = con.Project.getProject("drivepilot"”).uri;

// set the workitem type
TrackerService.EnumOptionId enumld = new TrackerService.EnumOptionId();
enumId.id = workItemType;
newWorkItem.type = enumld;

// set the title
newWorkItem.title = "Created By a WebService API-Call";

/) POLARION

After the IWorkltem class is instantiated and filled — at minimum with the type and project — the new workitem can be created.

// create the workitem
string newlWorkItemUri= con.Tracker.createWorkItem(newlWorkItem);

Following the call, the workitem can be seen in Polarion.

The next use case involves filling in the custom field targetVersion with the value Version 1.0. In this case, the API provides a class
EnumOptionld that should be filled with the following data:

e key: The key property is the id of the custom field. In this case it is targetVersion.

e parentltemURI: This property should be filled in with the Uri of the workitem. It identifies the work item where the
custom field will be stored.

e value: The value must be the same datatype as declared in the custom fields definition. The targetVersion a multi-
selectable enumeration. In this case the value is an array of EnumOptionlds.

The first the step is to fill the EnumOptionld and assign as an array the value:

// set the value, it is of type EnumOptionId[]
enumld = new TrackerService.EnumOptionId();
enumld.id= "Version 1 @";

cf.value= new TrackerService.EnumOptionId[] {enumId};
con.Tracker.setCustomField(cf);

After calling the setCustomField method from the TrackerWebService, the workitem will contain the value of the custom field.

The last step involves performing an action on the workitem.

// change the workitem status
foreach (TrackerService.WorkflowAction workflowAction in con.Tracker.getAvailableActions(newWorkItemUri))

{
if (workflowAction.nativeActionId == "reviewed")
{
con.Tracker.performiorkflowAction(neworkItemUri, workflowAction.actionId);
break;
¥
}

4.4 Retrieving information from TestRuns

There are two options for retrieving information from Testruns, search by the Testrun, or search by the id. The application will
located the Testrunld from the parameter list and the ITestRun object with the following statement:

TestManagementService.TestRun testRun= con.TestManagement.getTestRunByIld("drivepilot"”, testRunId);

The code iterates over the Testrecords and checks if any test-case executions failed. In this case of failed executions, the
Testcase and Defect Ids and Titles will be displayed on the Console:

foreach (TestManagementService.TestRecord testRecord in testRun.records)

{
if (testRecord.result.id == "failed")
{
TrackerService.WorkItem testcase = con.Tracker.getWorkItemByUri(testRecord.testCaseURI);
TrackerService.lWorkItem defect = con.Tracker.getWorkItemByUri(testRecord.defectURI);
Console.WriteLine("failed Testcase: {@} - {1}, defect: {2} - {3}",
kestcase.id, testcase.title, defect.id, defect.title);
}
}

/) PpOLARION

5 Additional information

After reviewing this document, you understand how you can connect Polarion using DOT-NET protocols. For more information about

Polarion or specific Polarion solutions, visit www.polarion.com, or contact us at info@polarion.com.

Americas & Asia-Pacific: Polarion Software, Inc.
1001 Marina Village Parkway, Suite 403, Alameda, CA 94501, USA

Europe, Middle-East, Africa: Polarion Software GmbH
KesselstraBe 19 — 70327 Stuttgart, GERMANY

Tel +49 711 489 9969 - 0 Tel +1 877572 4005

Fax +49 711 489 9969 - 20 Fax +1 510 814 9983
www.polarion.com - info@polarion.com POLARION www.polarion.com - info@polarion.com

http://www.polarion.com
mailto:info%40polarion.com?subject=

